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Preface

The first black hole solution of Einstein’s field equations was discovered by Karl
Schwarzschild. It represents the exact solution for the metric tensor of a point mass
in an otherwise empty space, and was later recognised to be a limiting case of a
more general solution found by Roy Kerr. The black hole solution hides at its center
a mathematical singularity that cannot be eliminated by any change of coordinates.
There, curvature scalars that are invariant under coordinate transformations diverge
to infinity. A black hole is indeed one of the simplest (mass, spin and electric
charge fully define its properties) and yet most mysterious concepts conceived by
the human mind. Black holes became an iconic figure in popular culture. The recent
Hollywood science fiction movie Interstellar features a supermassive Kerr black
hole as the uncredited leading actor.

Among the many questions posed by the theory of general relativity, one
was particularly intriguing: are black holes real, observable (albeit indirectly)
astrophysical objects, or we should consider them as a mathematical concept?
The idea that black holes do indeed form in nature developed as soon as it was
recognised that stars cannot remain in stable equilibrium when the pressure support
against gravity drops to the point that the total energy of the star is no longer a
minimum. Loss of dynamical stability occurs under a variety of conditions: when
the star is either supported by the pressure of degenerate relativistic electrons or
neutrons in cold, dense matter, or by radiation pressure in a hot, tenuous medium.
It occurs further when energy from nuclear reactions is deposited, triggered by the
ensuing instability. In addition, the instability is seeded in any star and regardless the
equation of state of matter when the non-linear nature of the gravitational interaction
becomes important, in the strong field limit.

While the concept of a black hole as the natural endpoint of the evolution of a
massive star was accepted, a more exotic flavour of these objects was envisaged. The
suggestion of the existence of supermassive black holes, weighting from millions to
billions solar masses, originated in the early 1960 following the discovery of the first
quasars. Quasars are active galactic nuclei that are so luminous that often outshine
their own host galaxies. Their radiation is emitted across a very broad spectrum,
from the X-rays to the far-infrared, and in a fraction of cases, from TeV energies to
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vi Preface

radio waves. Variability on short timescales soon revealed that the emitting region
is only a few light years across. All observational evidences made clear that a stellar
origin of the emission was highly unplausible: the hypothesis that a supermassive
black hole, lurking at the center of some galaxies, was responsible of the quasar
phenomenology was then soon prompted.

Now we know that supermassive black holes are a common presence in the
center of galaxies, and are a key ingredient in galaxy’s evolution. Indeed, over the
last 15 years, thanks to the unprecedentedly high angular resolution and sensitivity
of astronomical observing facilities, it has been possible to measure the spatial
distribution and spectroscopic velocities of stars not only in our Galactic Center,
but also in the nuclei of several nearby galaxies. All observations invariably point
towards the presence of a massive dark object with inferred masses similar to those
thought to power quasars. The concept that (almost) every spheroid harbours a
supermassive black hole in its very center is one of the greatest discovery in modern
astrophysics.

This volume treats what we called “astrophysical black holes”, i.e. black holes
seen in and from an astrophysical perspective. The field is vast but, in large degree,
fairly well defined. Based on their lectures given at the 2012 SIGRAV school,
organised by the Italian Society of Relativity and Gravitation for an international
group of Ph.D. students and supported by the Università degli Studi dell’Insubria
and by the Italian Institute of Nuclear Physics (INFN), leading renowned experts
give here their own view from many different angles of the complex black hole
phenomenon, highlighting the basic principles and observations, and the challenges
ahead in one of the most fascinating field in contemporary astrophysics and
cosmology.

Luciano Rezzolla opens this volume with a detailed review of the physics of
gravitational collapse in GR. He first illustrates the simplest and yet revealing model
of gravitational collapse: the Oppenheimer-Snyder collapse of a dust sphere to
a black hole, paying special attention to the dynamics of trapped surfaces, such
as apparent and event horizons. The contribution then turns to the more realistic
case of the gravitational collapse of a self-gravitating fluid sphere, exploiting all
the insight gained with dust, and introducing the very idea of black hole. Rezzolla
then discusses how we can learn about the properties of black holes, spherical and
axisymmetric, considering the motion of test particles. The second part of this first
chapter is instead dedicated to a rather different route leading to the formation of an
isolated black hole: the merger of a binary of black holes. In particular, it will be
shown how it is possible to compute the mass and spin of the final black hole simply
in terms of an algebraic expression containing information on the properties of the
two initial black holes. Rezzolla contribution is fully founded on GR, still it remains
essentially devoted to researchers with astrophysical interests.

Chris Nixon and Andrew King bring then our attention to some of the latest
development in accretion disks theory, namely the physics of warped disks. The
authors show how any non-axisymmetric force, a general condition in astrophysics,
inevitably led to the formation and propagation of warps in gas orbiting compact
objects, specifically black holes. In the chapters the authors discuss the two types
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of warp propagation, through waves and diffusion. They derive the evolution
equations and discuss their interpretation. The contribution continues with a detailed
description of the viscosity, and in particular of the relation between the small scale
turbulent viscosity and its role in shaping the effective viscosities which control the
dynamics of warped discs. Finally Nixon and King discuss some major results and
some outstanding problems in understanding this complex and subtle accretion disc
behaviour.

The book continues with the contribution of Rob Fender and Teo Munñoz-Darias,
focused on the population of stellar-mass black holes in our and other galaxies.
In particular the authors focus on how we can attempt to balance the available
accretion energy with feedback to the environment via radiation, jets and winds,
considering also possible contributions to the energy balance from black hole spin
and advection. Fender and Munñoz-Darias review the methods which are used to
estimate these quantities, and once these methods have been outlined, they work
through an outburst of a black hole X-ray binary system, estimating the flow of
mass and energy through the different accretion rates and states. While the focus is
on feedback from stellar mass black holes in X-ray binary systems, the contribution
considers also the applicability of what we have learned to supermassive black
holes in active galactic nuclei. Finally, the two authors review the coupling between
accretion and feedback in neutron stars, and show that it is very similar to that
observed in black holes, which strongly constrains how much of the astrophysics of
feedback can be unique to black holes.

With Andrea Merloni we then move to the realm of massive, and super-massive,
black holes. In his essay, Merloni reviews the current state of affairs regarding the
study of the evolution of the black hole population in the nuclei of galaxies. He first
describes the observational techniques used to survey the sky in search of signs of
black holes activity, and the progresses made on constraining the phenomenological
appearance of AGN. The chapter is then devoted to the physical description of the
processes thought to be responsible for the observed energy emission in luminous
AGN, focusing in particular on the properties of AGN accretion discs, coronae and
the IR-emitting dusty clouds. The contribution continues with a concise overview of
the current state of the art of AGN luminosity function studies at various wavelength,
encapsulating our knowledge about the overall population cosmic evolution. The
final part of the chapter is devoted to a general discussion of the methods by
which we use the evolutionary study of the AGN population to infer additional
global physical properties of the process of accretion onto and energy release by
supermassive black holes.

The volume continues with David Merritt, who deals with the study of orbital
motion in galactic nuclei. The author shows how encounters between stars and
stellar remnants at the centers of galaxies drive many important processes. The fact
that these encounters take place near a supermassive black hole alters the dynamics
in a number of ways. As an example, the orbital motion is quasi-Keplerian so that
correlations are maintained for much longer than in purely random encounters;
moreover, relativity affects the motion, through mechanisms like precession of the
periastron and frame dragging, and the black hole spin is affected, directly by
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capture and indirectly by spin-orbit torques. Merritt describes the interplay between
these processes, showing that GR can be crucially important even at distances that
are thousands of gravitational radii from the event horizon.

The essay of Michela Mapelli and Alessia Gualadris continues in treating the
dynamics around massive black holes, focusing now to our own Galactic Center, as
one of the most studied and yet enigmatic places in the Universe. The authors show
how the Galactic center is the ideal environment to study the extreme processes that
take place in the vicinity of a supermassive black hole, with a detailed review of
the main scenarios proposed to explain the formation and the dynamical evolution
of the early-type stars in such hostile environment. In particular, the most popular
in situ scenarios (accretion disc fragmentation and molecular cloud disruption) and
migration scenarios (star cluster inspiral and Hills mechanism) are discussed. The
authors’ focus is finally given on the most pressing challenges that must be faced to
shed light on the process of star formation in the vicinity of a super-massive black
hole.

The final chapter of this volume contains the contribution of Thibault Damour
and Alessandro Nagar. The authors give a comprehensive description of the two-
body problem in GR. After reviewing some of the methods used to tackle this
problem (and, more generally, the N-body problem), the authors focus on a new
approach to the motion and radiation of binary systems, called the Effective One
Body (EOB) formalism, reviewing the basic elements of this formalism, and recent
developments. Amour and Nagar then show the EOB formalism is able to provide
accurate descriptions of the dynamics and radiation of various binary systems
(comprising black holes or neutron stars) in regimes that are inaccessible to other
analytical approaches. In synergy with other tools and methods, the EOB formalism
is shown to be a promising way of computing the very many accurate template
waveforms that are needed for gravitational wave data analysis purposes.

Como, Italy Francesco Haardt
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Chapter 1
An Introduction to Astrophysical Black Holes
and Their Dynamical Production

Luciano Rezzolla

Abstract Astrophysical black-hole candidates provide the most abundant, and
possibly the only, evidence of the existence of black holes in nature. These
lectures are aimed at providing a basic theoretical introduction to the mathematical
properties of astrophysical black holes and to the dynamical processes leading to
their formation. In particular, I will first concentrate on the process of gravitational
collapse as this will illustrate how an isolated black hole can be produced under
rather general physical conditions. Next, I will discuss how the properties of a black
hole can be investigated by studying the motion of test particles and the various
classes of orbits they follow. Finally, I will consider the process of formation of a
black hole from the merger of a binary system of black holes. In particular, I will
show that it is possible to predict the mass and spin of the final black hole simply in
terms of the properties of the two initial black holes.

1.1 Introduction

The investigation of the dynamical processes leading to the formation of an
astrophysical black hole has a long history and still represents one of the most
interesting and rich problems in general relativity. In this chapter I will present a
brief overview of this topic considering two rather difference processes, namely, the
gravitational collapse to a non-rotating self-gravitating object (either a dust cloud or
a star) and the merger of two black holes.

In the first part of this chapter I will show that gravitational collapse can, under
suitable conditions, be the inevitable end state of a self-gravitating object. Next,
I will illustrate the simplest and yet revealing model of gravitational collapse: the
Oppenheimer-Snyder collapse of a dust sphere to a black hole. Special attention will
be paid to the dynamics of trapped surfaces, such as apparent and event horizons.
I will then turn to the more realistic case of the gravitational collapse of a self-

L. Rezzolla (�)
Institute for Theoretical Physics, Frankfurt am Main, Germany

Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
e-mail: rezzolla@itp.uni-frankfurt.de

© Springer International Publishing Switzerland 2016
F. Haardt et al. (eds.), Astrophysical Black Holes, Lecture Notes in Physics 905,
DOI 10.1007/978-3-319-19416-5_1

1

mailto:rezzolla@itp.uni-frankfurt.de


2 L. Rezzolla

gravitating fluid sphere, exploiting all the insight gained with dust. Once the basic
features of the gravitational collapse have been discussed and the idea of black hole
introduced, I will briefly discuss how we can learn about the properties of black
holes, spherical and axisymmetric, considering the motion of test particles. The
second part of the chapter is instead dedicated to a rather difference route leading
to the formation of an isolated black hole: the merger of a binary of black holes. In
particular, I will show how it is possible to compute the mass and spin of the final
black hole simply in terms of an algebraic expression containing information on the
properties of the two initial black holes.

In the following I will use a spacelike signature .�;C;C;C/ and a system of
units in which c D G D Mˇ D 1 unless stated otherwise. Four-dimensional
covariant and partial derivatives will be indicated in general with r� and @�, while
vectors (either four or three-dimensional) will be marked with a boldface font.
Within the standard convention of a summation of repeated indices, Greek letters
will be taken to run from 0 to 3, while Latin indices run from 1 to 3.

A final word before starting is one of caution. It is quite obvious that the topics
potentially covered under such a title can be countless, but also that this would
not reflect what presented at the School. Hence, the ground covered in this chapter
is very limited and aimed at providing the most basic theoretical elements about
astrophysical black holes. Additional information on many of the topics covered
here can be found in [1–5].

1.2 Compact Stars and Black Holes

Within a realistic astrophysical context, any discussion concerning the gravitational
collapse to black holes would necessarily start from considering the existence of the
“progenitors”, i.e., of stars whose pressure, in the course of their evolution, would
fail to balance the gravitational attraction. However, I will not take this step here and,
rather, bypass the problem by assuming that it is possible to construct a spherical
stellar model compelled to collapse to a black hole.

The indication that this scenario is at least plausible if not realistic comes already
from considering the simplest possible example: a spherically-symmetric, uniform
density, perfect-fluid star. Before asking about the gravitational collapse and its
inevitability in this case, let us recall how to find the equations for a star made
by a perfect fluid described by a stress-energy tensor of the type

T�� D .e C p/u�u� C pg�� ; (1.1)

where e; u� and p are, respectively, the total mass-energy density, the fluid four-
velocity and the (isotropic) pressure. The conservation of energy-momentum tensor

r˛T˛ˇ D 0 ; (1.2)
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and of the baryon number density n WD �=m0

r˛.nu˛/ D 0 ; (1.3)

provides the hydrodynamic equations that the stellar configuration has to satisfy.
Here, m0 is the mass of the particles composing the fluid (assuming for simplicity
that there is of one kind of particles) and � the rest-mass density. In Eqs. (1.2)
and (1.3), the operator r represents the covariant derivative with respect to the
spherically symmetric line-element

ds2 D �e2˚dt2 C e2�dr2 C r2d˝2 ; (1.4)

where d˝2 D d�2Csin2 �d�2. Projecting now Eq. (1.2) in the direction orthogonal
to the fluid four-velocity through the projector operator

P˛ˇ D u˛uˇ C g˛ˇ : (1.5)

we obtain the general relativistic Euler equations

.e C p/a� D �P�
ˇ@ˇp ; (1.6)

where a� WD uˇrˇu� is the fluid four-acceleration. The similarity of Eq. (1.6) with
the corresponding Euler equations

�.@tv
i C vj@jv

i/ D �@ip � @i˚Newt ; (1.7)

for a fluid with three-velocity vi in a Newtonian gravitational potential ˚Newt is
rather transparent. Imposing the conditions of stationarity and spherical symmetry,
the only remaining non-trivial Euler equation is

.e C p/
d˚

dr
D �dp

dr
; (1.8)

where the metric potential ˚ is clearly related to the corresponding Newtonian
gravitational potential ˚Newt.

Next, we consider the Einstein field equations G˛ˇ D 8�T˛ˇ and introduce the
following parameterisation of the radial coefficient of the metric

grr WD e2� D 1

1 � 2m.r/=r
; (1.9)

so that

m.r/ D 1

2
r.1 � e�2�/ : (1.10)
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The non-zero components of the Einstein tensor are

G00 D e2˚

r
Œr.1 � e�2�/	0 ; (1.11)

Grr D �e2�

r
.1 � e�2�/C 2

r
˚ 0 ; (1.12)

G�� D r2e�2�
�
˚ 00 � .˚ 0/2 C ˚ 0

r
� ˚ 0�0 � �0

r

�
; (1.13)

G�� D G�� sin2 �; (1.14)

where the prime indicates the radial derivative. The Einstein equations become

dm.r/

dr
D 4�r2e ; (1.15)

dp

dr
D � .e C p/.m C 4�r3p/

r.r � 2m/
: (1.16)

Equations (1.8), (1.15), (1.16), supplemented by an equation of state relating, say,
p and �, are known as the Tolman, Oppenheimer and Volkoff (TOV) equations.
Solving the TOV equations requires, in general, a numerical integration; fortunately,
analytic expressions are available in the case of a spherically-symmetric star of
uniform density. The radius R of the star is defined as the locus where the pressure
vanishes: p.R/ D 0 whereas p.r/ 6D 0 for r < R i.e., in the interior of the
star. Recalling that Birkhoff’s theorem guarantees that the exterior solution is the
Schwarzschild solution [1, 2], one easily deduces that the metric components are
given by

grr D

8̂
<̂
ˆ̂:

�
1 � 2

r

4�r3

3
e0

��1
for r � R (interior),�

1 � 2M

r

��1
for r > R (Schwarzschild) ,

(1.17)

and

p�gtt D e˚ D

8̂
ˆ̂<
ˆ̂̂:

3

2

�
1 � 2M

R

�1=2
� 1

2

�
1 � 2Mr2

R3

�1=2
for r � R (interior),

�
1 � 2M

r

�1=2
for r > R (Schwarzschild).
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In the previous expressions, M is the “gravitational mass” of the star

M WD
Z R

0

4�r2e0dr D 4�

3
R3e0 ; (1.18)

so that the average energy density is

e0 D 3M

4�R3
: (1.19)

Needless to say, although the density is uniform within the star, the pressure is not
and is given by

p D p.r/ D e0

"
.1� 2Mr2=R3/

1=2 � .1 � 2M=R/1=2

3.1� 2M=R/1=2 � .1 � 2Mr2=R3/1=2

#
: (1.20)

For a given choice of M, the radius R of the star can be calculated explicitly from
the density e0 and the value of the pressure in the center of the star

pc WD p.r D 0/ D e0

"
1 � .1 � 2M=R/1=2

3.1 � 2M=R/1=2 � 1

#
; (1.21)

and by imposing the vanishing of the pressure at r D R

R D
vuut 3

8�e0

"
1 � .e0 C pc/

2

.e0 C 3pc/
2

#
: (1.22)

Overall, the uniform-density solution depends on a single parameter e0, but has
an important limit in the ratio M=R, which is also referred to as the compactness
of the star. In particular, Eq. (1.21) indicates that pc ! 1 for M=R ! 4=9; an
infinite pressures is therefore necessary to support a star with a radius R < 9=8RS,
where RS WD 2M is Schwarzschild radius. As a result, should a star reach such
compactness, its final fate can only be that of a black hole. This is sometimes
referred to as “Buchdal’s theorem” and applies also to more realistic equations of
state.

1.3 Oppenheimer-Snyder Collapse

So far we focused on stationary configurations but the gravitational collapse is
clearly a dynamical process involving considerable portions of spacetime. Also
in this case, it is useful to start studying a simplified scenario as the one offered
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by the collapse of a star made of uniform-density pressureless dust. This is also
known as the Oppenheimer-Snyder (OS) collapse [6]. In this case, in fact, the fluid
motion is particularly simple being that of collisionless particles having a highly
symmetric collective motion. In addition, the spherical symmetry (via Birkhoff’s
theorem) guarantees that the only portion of spacetime that is undergoing an
effective evolution is the interior of the star, the exterior always remaining that of a
Schwarzschild solution (albeit with a dynamical boundary).

Before looking at the details of the dynamics it is useful to consider the set
of equations, both Einstein’s and hydrodynamical, that describe the process; these
equations are also the starting point for the study of general relativistic cosmology.

We start considering a spherically symmetric, diagonal line element1 of the form

ds2 D �a2dt2 C b2dr2 C R2d˝2 : (1.23)

where a and b are functions of .r; t/. Here, R is a circumferential radial coordinate
since the proper circumference is calculated simply as

C D
Z

r; � D const:

p
ds2 D

Z p
g��d� D 2�R : (1.24)

Adopting a set of comoving coordinates, the fluid four-velocity is u˛ D .u0; 0; 0; 0/,
and since u˛u˛ D �1 so that

u˛ D .a�1; 0; 0; 0/ ; u˛ D .�a; 0; 0; 0/ : (1.25)

To cast the hydrodynamic equations in a form that resembles corresponding
Newtonian expressions, it is better to introduce differential operators that measure
variations with respect to the proper distance and time. In general

@

@.proper xˇ coordinate/
D @p

g˛ˇ@xˇ
; (1.26)

Dt D proper time derivative WD 1

a
@t ; (1.27)

Dr D proper radius derivative WD 1

b
@r : (1.28)

We may introduce the quantities

u WD DtR D 1

a
@tR; 
 WD DrR D 1

b
@rR ; (1.29)

1In spherical symmetry there is no loss of generality in doing this choice.
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where u is the radial component of a four-velocity in a coordinate system that has
R as the radial coordinate, while 
 measures the variation of the circumferential
radius with respect to the radial coordinate. With the above choices, the full set of
equations for the field and for the fluid is written as follows

Dte

e C p
D Dte0

e0
; (conservation of energy) ; (1.30)

Dte0
e0

D � 1

R2
@R.uR2/ ; (conservation of baryon number) ;

(1.31)

Dtu D � 


e C p
Drp � m

R2
� 4�pR ; (conservation of momentum) ; (1.32)

Dt
 D � u

e C p
Drp ; (1.33)

Dtm D �4�R2ue ; (1.34)


 2 D 1C u2 � 2m

R
: (1.35)

The last three equations are the only nonzero Einstein equations and the function 

represents the general-relativistic analogue of the Lorentz factor of special relativity
(
 D 1 in Newtonian physics). Equations (1.30)–(1.35), together with an equation
of state, represent the set of equations to be solved to compute the evolution of the
interior spacetime of a star that is collapsing.

In the case of dust, the fluid particles are collisionless and share the same
radial motion. The pressure vanishes and this simplifies the above set of equations
considerably. Furthermore, since the rest-mass does not change during the collapse,
we can introduce a new variable that labels the different shells with the rest-mass
they contain, i.e.

�.r/ WD
Z
4�R2�b dr : (1.36)

Clearly, this parameterisation is valid as long as each shell does not interact with the
neighbouring ones, i.e., there is no shell-crossing.

Let us consider now the consequences of the hypothesis that the fluid is
homogeneous, i.e., Drp D 0 D Dre. In this case, the first of Eq. (1.34) reduces
to Dt
 D 0, so that 
 D 
 .�/ only and

m D
Z R0

0

4�R2e dR D 4�

3
R30e : (1.37)

It is useful to adopt a “comoving-observer gauge”, i.e., a gauge in which the time
coordinate is the proper time on worldlines where dxi D 0; i D 1; 2; 3 and such that
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g00 D a D 1 or, equivalently, Dt D @t. Furthermore, because of the homogeneity
assumption, we can decompose R D R.�; t/ as R D F.t/ QR.�/, so that

PR WD @tR D u D PF QR D
PF
F

R : (1.38)

The Einstein Eq. (1.35) becomes


 2 D 1C u2 � 2m

R
D 1C R2

2
4
 PF

F

!2
� 8�e

3

3
5 D 1 � �R2.�; t/

S2.t/
; (1.39)

where � D 0;˙1 accounts for the sign of the term in square brackets and S, a
function of time only, is just a shorthand for what is contained in the square brackets.
Because of the decomposition of R, the ratio QR=S is a function of r only and thus we
can simply write


 2 D 1 � �r2 ; (1.40)

so that the line element (1.23) becomes

ds2 D �a2dt2 C b2dr2 C R2d˝2 D �dt2 C S2.t/

�
dr2

1 � �r2
C r2d˝2

�
: (1.41)

It is not difficult to recognize that the line element (1.41) is the metric of a
Friedmann-Robertson-Walker cosmological solution, where the function S (i.e., the
conformal factor of the spatial part of the metric) is simply the “scale factor”. Simi-
larly, it will not be surprising that, when expressed in this metric, the hydrodynamic
and Einstein equations will essentially reduce to the Friedmann equations

RS D �4�
3
.e C p/S ; (1.42)

PS2 � 8�

3
eS2 D �� : (1.43)

Stated differently, the spatial part of the line element (1.41) describes geometries
with different constant curvatures (i.e the curvature is the same everywhere but it is
not constant in time), with the different geometries being selected by the values of
the coefficient �. In other words, in spherical symmetry, the dynamical spacetime of
a collapsing (expanding) region occupied by homogeneous matter is a Friedmann-
Robertson-Walker (FRW)-universe.

In cosmological terms, there are three possible solutions according to the value
of � and thus on the constant curvature (� D �1, curved open universe; � D 0:
flat universe, � D 1; curved closed universe). Clearly, the relevant solution in the
context of an OS collapse is the one with positive constant curvature (i.e., � D 1) in
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which case the line element can be expressed in terms of comoving hyperspherical
coordinates .�; �; �/

ds2 D �d2 C S./Œd�2 C sin2 �d˝2	 ; (1.44)

where � D sin�1 r.
There is an important difference between the FRW universe and the spacetime

of an OS collapse, since in the latter case not all of the spacetime is occupied by
matter (the dust sphere has initially a finite radial size R0) and the vacuum region
corresponding to R > R0 is described by a Schwarzschild spacetime. The matching
between the two regions can be done at the surface of the star by requiring the
continuity of the metric via, say, the continuity of the proper circumference

CSchw: WD
Z p

g��d� D 2�R0 D CFRW WD 2�S sin�0 : (1.45)

Since (1.45) must hold at all times, we have that

R0 D S sin�0 : (1.46)

Let us now consider the equations of motion in the collapsing region of the
spacetime. In this case, Eq. (1.34), reduces to Dtm D 0, thus implying that m is
not a function of time but of radius only, i.e., m D m.�/ as it should be in the
absence of shocks. Similarly, Eq. (1.32) reduces to

Dtu D �m=R2 ; (1.47)

which is essentially the geodetic equation. The trajectory of any shell can therefore
be obtained through a time integration of (1.47) and is given by

PR WD dR

d
D DtR D

�
2m

R
� 2m

R0

�1=2
: (1.48)

In other words, a shell of dust will go from R0 to R D 0 in a finite proper time

 D �

2
R0

�
R0
2M

�1=2
: (1.49)

Note that this time will be the same for all initial radial positions R; this is a trivial
consequence of the uniformity in density, for which the ratio R3=m.R/ is constant.

Once expressed in the coordinate system (1.44) and after introducing the “cycloid
parameter” � 2 Œ0; �	 defined by d� D d=S, the equations of motion take the
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simpler form

R D R0
2
.1C cos �/ ; S.�.// D Sm

2
.1C cos�/ ;  D Sm

2
.�C sin �/ ;

(1.50)

where � is playing the role of a time coordinate (� D 0 at the beginning of collapse
and � D � at the end).

Using now Eq. (1.50) and the condition (1.45), we find that

Sm D
�

R30
2M

�1=2
; �0 D sin�1

�
2M

R0

�1=2
: (1.51)

It is particularly interesting to calculate the proper time  at which a shell initially
at R0 reaches R D 2M. This can be computed from (1.50) and is given by

2M D
�

R30
2M

�1=2
.�2M C sin �2M / ; (1.52)

where �2M WD cos�1.4M=R0 � 1/. These expressions will be useful in the following
section to discuss what happens to outgoing photons as the collapse proceeds. The
dynamics of OS collapse is summarised in Fig. 1.1.

Fig. 1.1 Schematic diagram
showing the worldlines of
different collapsing radial
shells in a .R; / spacetime
diagram. The various lines
refer to shells initially at
0; .1=4/R0; .1=2/R0; .3=4/R0 ,
and R0, and the lavender
shaded area represents the
stellar interior. Note that they
all reach the singularity at the
same proper time

 D �
2

�
R30
2M

�1=2
. Also

reported in the inset are the
same worldlines but shown as
a function of the cycloid
parameter � [figure taken
from [1]]
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1.4 OS Collapse: Trapped Surfaces

Assuming the cosmic censorship to hold, namely, that the physical singularity is
always hidden behind by a null surface that photons cannot leave, i.e., the event
horizon, the final result of the spherical collapse is a Schwarzschild black hole.
However, the Schwarzschild solution will be reached only asymptotically and is
interesting to ask how the event horizon is formed during the collapse. In practice
we need to study the trajectory of the outermost outgoing photon that was not able
to reach null infinity. Similarly, we can calculate where, at each instant during the
collapse, the last outgoing photon will be sent and reach null infinity. This surface
will mark the outermost trapped surface, i.e., the apparent horizon and by definition
it will always be contained within the event horizon.

Let us consider therefore the worldline of an radially outgoing photon. In this
case, ds2 D 0 D d� D d� and the line element (1.44) then yields the curves

d�

d
D ˙ 1

S./
; (1.53)

Using now the cycloid parameter � [cf. Eq. (1.50)], it is easy to show that these
photons propagate along straight lines in a .�; �/ plane

d�

d�
D ˙1 ; (1.54)

i.e., they follow curves of the type

� D �e ˙ .� � �e/ ; (1.55)

where �e and �e are the “place” and “time” of emission, respectively. A swarm of
outgoing photons will be trapped if their proper area will not grow in time, i.e., if

dA

d�
� 0 ; (1.56)

where A WD R p
g��g��d�d�. Writing out the condition (1.56) explicitly yields

�e � � � 2�e ; (1.57)

which indicates that any outgoing photon emitted at a position �e and at a time �e

will be able to propagate out if and only if �e is smaller that � � 2�e. In practice,
this condition singles out a region in a .�; �/ plane, which trapped photons cannot
leave.

Among all the possible trapped surfaces, the most important is certainly the
outermost one since it will discriminate between the photons that will propagate to
null infinity from the ones that will be trapped. Such a surface selects the apparent
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horizon and since �e � �0 (the emission takes place within the star) it is simply
expressed as

�ah D � � 2�0 D 2 cos�1
�
2M

R0

�1=2
; (1.58)

where we have used expression (1.51) to derive the last term in (1.58).
A natural question to ask this point is: when does the apparent horizon first form

and where is it located? Luckily, answering these questions in the case of an OS
collapse is particularly simple and reveals that the apparent horizons first forms
when the stellar surface crosses R D 2M. Note that this is true only in the OS
collapse.

Finally, we consider the evolution of the event horizon which is defined as the
surface for which the equality in condition (1.56) holds. Using the constraint that
the event horizon is always outside or coincides with the apparent horizon, we can
set �eh D �ah when � D �ah, so that the worldline for the event horizon is given by

�eh D �0 C .�� �ah/ ; (1.59)

for � � �ah. Using now the circumferential radial coordinate we can write that

Reh D 1

2

�
R30
2M

�1=2
.1C cos�/ sin.�0 C � � �ah/ : (1.60)

An important property to be deduced from (1.60) is that the event horizon starts
from a zero radius and then progressively grows to reach R D 2M; this is to be
contrasted with what happens for the apparent horizon, that is first formed with a
nonzero radial size.

The dynamics of the trapped surfaces is summarised in Fig. 1.2, which is similar
to Fig. 1.1, but where we have reported the worldline of the stellar surface R0./
(dark blue line), that of the event horizon (green dashed line) and of the apparent
horizon (orange solid line). Note that the event horizon grows from zero size and
reaches the value 2M when the stellar surfaces is at that position. This also marks the
time when the inward-expanding apparent horizon is formed, which then shrinks to
zero size as the dust star approaches the “covered” singularity. Note also that another
outward expanding apparent horizon is formed at 2M , but this then coincides with
the event horizon. The trapped regions inside the event horizon and outside the
shrinking apparent horizon are marked with a light-green and with an orange shaded
area, respectively. Much of what we have learnt about the dynamics of trapped
surfaces in the OS collapse continues to hold true also in the case of the collapse of
a perfect fluid, where however the apparent horizon is also formed earlier because
of the additional contribution of the fluid compression.
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Fig. 1.2 Schematic diagram showing the worldlines of the event horizon (EH), of the apparent
horizon (AH) and of the stellar surface (R0). The inset offers a magnified view, where it is possible
to note that the event and apparent horizons coincide after the stellar surface has reached R D 2M
[figure taken from [1]]

The two panels of Fig. 1.3 offer instead a summary of the dynamics of the most
relevant surfaces during the collapse of uniformly rotating fluid stars [7–11]. First,
in the case of a slowly rotating star, i.e., model D1 on the left panel, the differences
between the equatorial and polar circumferential radii of the two trapped surfaces
are very small and emerge only in the inset which offers a magnified view of
the worldlines during the final stages of the collapse. This is not the case for a
rapidly rotating star, i.e., model D4 on the right panel, for which the differences
are much more evident and can be appreciated also in the main panel. Second, the
worldlines of the stellar surface are very different in the two cases. In particular, for
the slowly rotating model, the star collapses smoothly and the worldline always has
a negative slope, thus reaching progressively smaller radii as the evolution proceeds.
By time t '0.59 ms, the stellar equatorial circumferential radius has shrunk below
the corresponding value of the event horizon. In the case of the rapidly rotating
model D4, on the other hand, this is no longer true and after an initial phase which
is similar to the one described for D1, the worldline does not reach smaller radii.
Rather, the stellar surface slows its inward motion and at around t � 0.6 ms the
stellar equatorial circumferential radius does not vary appreciably. Indeed, the right
panel of Fig. 1.3 shows that at this stage the stellar surface moves to slightly larger
radii. This behaviour marks the phase in which a flattened configuration has been
produced and the material at the outer edge of the disc experiences a stall. As
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Fig. 1.3 Evolution of the most relevant surfaces during the collapse for the cases of slowly and
rapidly rotating stars. Solid, dashed and dotted lines represent the worldlines of the circumferential
radii of the event horizon, of the apparent horizon and of the stellar surface, respectively. Note
that for the horizons we plot both the equatorial and the polar circumferential radii, while only
the equatorial circumferential radius is shown for the stellar surface. Shown in the insets are the
magnified views of the worldlines during the final stages of the collapse [figure taken from [1]]

the collapse proceeds, however, also this material will not be able to sustain its
orbital motion and after t � 0.7 ms the worldline moves to smaller radii again. By
a time t '0.9 ms, the stellar equatorial circumferential radius has shrunk below the
corresponding value of the event horizon.

1.5 Geodesic Motion in Schwarzschild and Kerr Spacetimes

Now that we have discussed that a fluid configuration can reach situations in which
an equilibrium is no longer possible and have investigated what happens when such
a configuration collapses to a black hole, we can move on and study geodesic
motion in black-hole spacetimes. Indeed, the study of “test-particle” motion in a
given spacetime geometry is very important since it allows one to highlight some of
the properties of the spacetime under investigation without having to resort to the
full system of Einstein equations. The particle needs to be a “test” particle (small
enough not to perturb the spacetime), neutral (not to react to electromagnetic forces)
spherical (so as not to be subject to torques), etc. From a pictorial point of view,
the study of the motion of test-particles is not very different from “probing” the
properties of a hole by throwing stones into it.

Test-particles move along “geodesics”. There are at least two different and
equivalent definitions of geodesics. According to the first definition, a geodesic in
affine geometry is a curve x� D x�.�/ that parallel transports its tangent vector
u˛ D dx˛=d�. I recall that a four-vector v is parallel transported along a curve x.�/
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with tangent u if ruv D 0. In component form this is equivalent to

uˇrˇv
˛ D uˇ.@ˇv

˛ C 
 ˛
ˇ�v

�/ D 0 ; (1.61)

where we introduced the covariant derivative. Hence, a geodesic curve should be
seen as the solution nonlinear system of equations

d2x˛

d�2
C 
 ˛

ˇ�

dxˇ

d�

dx�

d�
: (1.62)

In the (pseudo)-Riemannian case the coefficients of the affine connection are the
Christoffel symbols


 ˛
ˇ� D 1

2
g˛�

�
@�g�ˇ C @ˇg�� � @�gˇ�

	
: (1.63)

In flat space 
 ˛
ˇ� D 0 and the geodesics are straight lines. This is why it is commonly

stated that geodesics are the analogues of straight lines in curved space. This idea
is strengthened by the second possible definition of geodesics as the curves joining
two given events A and B that are of extremal length. Here one derives the geodetic
equations from a variational principle

ı

Z B

A
ds D 0 ; (1.64)

where

ds2 D g˛ˇdx˛dxˇ ; (1.65)

is the spacetime interval between A and B [2–4]. The above variational problem can
be shown to be equivalent to the following one

ı

Z �2

�1

1

2
g˛ˇ.x/Px˛ Pxˇd� D 0 ; (1.66)

where � is an affine parameter along the curve and the overdot indicates derivative
with respect to this parameter. The geodesic equations (1.62) then coincide with the
corresponding Euler-Lagrange equations

d

d�

@L

@Px˛ D @L

@x˛
; (1.67)

where the Lagrangian is given by

L D 1

2
g˛ˇ.x/Px˛ Pxˇ ; (1.68)
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and the momenta conjugate to the coordinates x˛ are introduced in the usual way

p˛ D @L

@Px˛ ; (1.69)

Obviously the momentum p˛ is conserved when the metric does not depend on the
coordinate x˛ .

For a Schwarzschild black hole in Schwarzschild coordinates, the metric reads

ds2 D �
�
1 � 2M

r

�
dt2 C

�
1 � 2M

r

��1
dr2 C r2

�
d�2 C sin2 �d�2

	
; (1.70)

and the Lagrangian describing geodesic motion of is given by

2L D �
�
1 � 2M

r

�
Pt2 C

�
1 � 2M

r

��1
Pr2 C r2

� P�2 C sin2 � P�2
�
: (1.71)

Because the metric does not depend on t and �, the corresponding Euler-
Lagrange equations express conservation laws of the conjugate momenta

� pt D
�
1 � 2M

r

�
Pt D E ; (1.72)

d

d�
pt D 0 ; (1.73)

p� D r2 sin2 � P� D l ; (1.74)

d

d�
p� D 0 ; (1.75)

where � D =m0, and with  being the proper time of a massive particle of rest
mass m0. Note that the equation corresponding to the � coordinate

d

d�
r2 P� D r2 sin � cos � P�2 ; (1.76)

is simply stating that the orbit is planar and hereafter I will take � D �=2 without
loss of generality.

In order to appreciate the physical meaning of the constants E and l it is useful to
consider how they are related to measurements made by locally static observers. To
this end we introduce an orthonormal tetrad such that

e Ǫ � e Ǒ D � Ǫ Ǒ ; Q! Ǫ � Q! Ǒ D � Ǫ Ǒ
; (1.77)

where Q!s are the corresponding one-forms and � Ǫ Ǒ D diag.�1; 1; 1; 1/ is the flat
Minkowski metric. Requiring orthonormality and stationarity, one easily obtains
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that

eOt D
�
1 � 2M

r

�� 1
2

et ; Q!Ot D
�
1 � 2M

r

� 1
2

Q!t ; (1.78)

eOr D
�
1 � 2M

r

� 1
2

er ; Q!Or D
�
1 � 2M

r

�� 1
2

Q!r ; (1.79)

e O� D 1

r
e� ; Q! O� D r Q!� ; (1.80)

e O� D 1

r sin �
e� ; Q! O� D r sin � Q!� ; (1.81)

(1.82)

where eˇ˛ D ı
ˇ
˛ . In special relativity, the invariant mass p � p D p2 D �m2, coincides

with the rest mass measured by a static observer

p � u D p0u
0 D �p0 D �m : (1.83)

The above identity may be rewritten as follows

E D �p˛u˛ D �p˛e˛t D �pt D ��ttp
t D pt : (1.84)

In a Schwarzschild spacetime

Eloc D �p˛e˛Ot D �p˛e˛t

�
1 � 2M

r

�� 1
2

D E

�
1 � 2M

r

�� 1
2

> E ; (1.85)

and the two energies are related by the redshift formula

E1
Eloc

D �1
�loc

D
�
1 � 2M

r

� 1
2

; (1.86)

where �1 and �loc are, for instance, the frequencies of a photon as measured at
spatial infinity and near the black hole, respectively.

Similarly, we can define the angular velocity measured by a locally static
observer

v
O� D

p˛e˛O�
p˛e˛Ot

D l

r sin �Eloc
(1.87)

so that the constant of motion

l D v
O�r sin �Eloc ; (1.88)

can be seen as the conserved relativistic angular momentum.
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1.5.1 Massive Particles

Hereafter, I will distinguish the motion of massive and massless particles, concen-
trating first on the former and leaving the latter to Sect. 1.5.2. In this case, the
Lagrangian is normalised by the mass by the relation 2L D �m2

0. In this way,
Eq. (1.71) becomes

dr

d
D ˙

"
QE2 �

�
1 � 2M

r

� 
1C

Ql2
r2

!# 1
2

; (1.89)

where Ql WD l=m0 and QE WD E=m0. When Ql D 0 and QE D .1� 2M=R/ < 1, Eq. (1.89)
can be integrated to give

 D
r

R3

8M

 
2

r
r

R
� r2

R2
C cos�1

�
2r

R
� 1

�!
; (1.90)

so that  D 0 when r D R. The remarkable fact is that the proper time to reach first
the horizon, i.e., r D 2M from any R > 2M, and then the singularity at r D 0 is
finite. To see this, one may introduce the cycloid parameter � as

r D R

2
.1C cos�/ : (1.91)

Equation (1.90) then becomes

 D
r

R3

8M
.�C sin �/ ; (1.92)

which obviously coincides with the result found in Eq. (1.52) for the OS collapse:
in both cases the motion is a free fall.

The situation is completely different when one integrates the equations of motion
in terms of the coordinate time t. In this case, in fact, one gets

t

2M
D log

ˇ̌̌
ˇ̌
p

R=2M � 1C tan �=2p
R=2M � 1 � tan �=2

ˇ̌̌
ˇ̌C

r
R

2M
� 1

�
�C R

2M
.�C sin �/

�
:

(1.93)

When r D 2M one has tan �=2 D p
R=2M � 1, so that it takes an infinite coordinate

time to reach the horizon from any R > 2M. This behaviour reflects the singular
properties of the event horizon and, at the same time, the fact that the singularity
comes from the coordinates and it is not physical. This is seen, for instance, by
calculating the curvature invariants, which are perfectly regular at the horizon and
only diverge at r D 0.
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The velocity measured by a static observer is

v Or D p Or

pOt D p Or
pOt D p˛e˛Or

Eloc
D pr

�
1 � 2M

r

	 1
2

Eloc
D pr

E
D m

E

dr

d
D

D 1

QE

vuut QE2 �
�
1 � 2M

r

� 
1C

Ql2
r2

!
: (1.94)

Note that v Or ! 1 on the horizon irrespective of the values of QE and Ql. In other
words, a particle will cross the horizon at the speed of light independently of the
initial conditions. In the case of radial fall from rest at infinity, i.e., QE D 1 and
Ql D 0, the above formula reproduces the Newtonian result

v Or D
r
2M

r
: (1.95)

Let us consider now more general non-radial orbits and rewrite Eq. (1.89) as

dr

d
D ˙ � QE2 � V.r; Ql/	 12 ; (1.96)

where

V WD
�
1 � 2M

r

� 
1C

Ql2
r2

!
; (1.97)

is the effective potential, which reduces to the Newtonian effective potential at large
distances, namely (see Fig. 1.4)

V.r/ �
�
1 � M

r

� 
1C

Ql2
2r2

!
D 1 � M

r
C

Ql2
2r2

C O

�
1

r3

�
WD VNewt :

(1.98)

The radial equation (1.96) is also useful to classify the different types of orbits
which are possible and which will essentially depend on the number of maxima and
minima the effective potential will have for a given value of the specific angular
momentum (if Ql D 0 the orbit is simply radial and will connect any radial point with
the origin). Let us assume, for the time being, that the specific angular momentum
is such that it yields an effective potential with a local maximum with V > 1,
and local minimum, just as illustrated in the left panel of Fig. 1.4, which refers to
Ql=M D 4:1. In this case, using the specific energy QE as a decreasing parameter, the
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Fig. 1.4 Left panel: effective potential V.r/ for a value Ql=M D 4:1 of the specific angular
momentum. Shown are the different types of orbits allowed: capture, marginally bound, marginally
stable, elliptic and circular, as determined by the different values of the energy above the green
dashed area. Shown as black shading is the region inside the horizon, with the radial scale set to be
logarithmic. Right panel: effective potential V.r/ of the Schwarzschild metric for some values of
the angular momentum Ql. The inset shows the value of the effective potential at the local extrema
and it should be noted that the radial scale is linear

orbits can be:

• capture orbit: no intersection is possible between the effective potential and
a constant-energy level. No matter how large the angular momentum, there is
always a value of the energy that makes the particle reach the origin. This is
to be contrasted with the Newtonian case, where the effective potential diverges
as r ! 0, and thus no matter how small (but nonzero) the angular momentum,
a particle in a Newtonian orbit will never reach the origin (i.e., the Newtonian
potential has a zero capture cross-section).

• circular, unstable orbit: this is located at the local maximum of the effective
potential, rcirc;u, where dr=d D 0, and is such that any perturbation will move
the particle either to smaller or to larger radii.

• hyperbolic, unbound orbits: these correspond to orbits of particles with energies
at spatial infinity larger than one (i.e., with positive velocity), that move towards
the origin till reaching a minimum radial position at which dr=d D 0, i.e., a
turning point, from where they return to infinity.

• parabolic, bound orbit: this corresponds to an orbit of a particle with energy
at spatial infinity equal to one (i.e., at rest), that moves towards the origin till
reaching a turning point, rb. For Ql=M D 4, the turning point coincides with the
unstable circular orbit rcirc;u and is located at 4M (see below).
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• “elliptic”, bound orbits: these correspond to orbits with energies at spatial
infinity less than one (i.e., bound particles) that have two turning points at r1
and r2.2

• circular, stable orbit: this is located at the local minimum of the effective
potential, rcirc;s, where dr=d D 0, and is such that any small perturbation away
from the stable orbit will move the particle back to it.

The values of the specific angular momentum for which the effective potential
shows both local minima and maxima, i.e., for which @rV.r/ D 0, and thus for
which circular orbits exist, is given by

Ql2 D Mr2

r � 3M
; (1.99)

with corresponding energies

QE2 D .r � 2M/2

r.r � 3M/
: (1.100)

To ensure that the right-hand side is positive, such extremal points exist only
for Ql=M � 2

p
3. Furthermore, for Qlms=M D 2

p
3 ' 3:46, the stable and unstable

circular orbits coincide, leading to an inflection point at the radius rms D 6M, which
is also called the marginally stable radius. The corresponding orbit is also known as
the innermost stable circular orbit or ISCO and because this represents the smallest
possible radius for a stable circular orbit, it is often taken to mark the inner edge of
an accretion disc around a black hole.

The variation of the effective potential with the specific angular momentum is
illustrated in the right panel of Fig. 1.4, while the inset shows the values of the
effective potential at the local extrema (which coincide with the energies of the
unstable circular orbits), and is given by

V2
extr.r/ D 4M2 .r=2M � 1/2

r.r � 3M/
: (1.101)

Setting Vextr.r/ D 1 will mark the position of the marginally bound orbit rmb D
4M, namely, the smallest radius for a bound, circular but unstable orbit. A particle
leaving spatial infinity at rest (i.e., with QE D 1), will move on a parabolic orbit down
to r D rmb, where it can remain on a circular orbit but in unstable equilibrium.

In summary, unstable circular orbits exist for

3M D rph � r < rms D 6M ; ” 2
p
3 � Ql=M < 1 ; (1.102)

2Note that these orbits are not closed because of the advance of the periastron, another general-
relativistic effect of the motion in a gravitational field [2]. Hence, the defining property of these
orbits is that of having two turning points and not that of being closed ellipses.
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while stable circular orbits exist for

6M D rms � r < 1 ; ” 2
p
3 � Ql=M < 1 : (1.103)

Using Eq. (1.101), it is not difficult to estimate that the energy corresponding to
the ISCO is QEms D p

8=9 ' 0:943, and this apparently simple result calls for
an important comment. Consider, in fact, a particle progressively moving from a
circular orbit to a neighbouring one and losing part of its energy in the transition
(e.g., a fluid element in an accretion disc). The total energy that can be lost when
inspiralling from spatial infinity down to the ISCO is �E D .1 � QEms/ ' 0:057,
implying an efficiency in the conversion of the binding energy of '6%. When
comparing this with the efficiency of nuclear fission (i.e., �0:1%) or of nuclear
fusion (i.e., �0:4%), it becomes clear that accretion onto a black hole represents
one of the most efficient processes to extract energy. As we will comment in the
following section, this efficiency can be further increased in the case of a rotating
black hole.

For a circular orbit it is also possible to compute the angular velocity as seen by
an observer at infinity

˝ D
P�
Pt D

Ql2
r2

�
1 � 2M=r

QE
�
: (1.104)

In the case of circular orbits, by using Eqs. (1.99) and (1.100) we get

˝ D
r

M

r3
; (1.105)

exactly as in Newtonian gravity. On the other hand

v
O� D l

rE

�
1 � 2M

r

� 1
2

! 0 for r ! 2M ; (1.106)

that is, all the particles, even those with angular momentum, enter the event horizon
on radial trajectories.

Let us now calculate the cross section for a particle flying by the black hole where
the maximum impact parameter is bmax D limr!1 r sin �. Since

�
dr

d�

�2
D
� Pr

P�
�2

D r4

 QE2 � .1 � 2M=r/

�
1C Ql2=r2

	�
Ql2 ; (1.107)

for r ! 1 and � � 1 we then have

�
dr

r2d�

�2
' 1

b2
' QE2 � 1

Ql2 D v21
Ql2.1 � v21/

; (1.108)
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or else

Ql D bv1p
1 � v21

' bv1 : (1.109)

If the particle is non-relativistic at infinity, then v1 � 1, QE ' 1 and the capture
occurs for Ql < 4M and therefore3 bmax D 4M=v1; in turn, this implies that

�capture D �b2max D 16�M2

v21
; (1.110)

This result may be compared with the Newtonian result �Newt D 2�MR=v21 relative
to a gravitating sphere of mass M and radius R; the comparison then suggests that a
black hole captures nonrelativistic particles as if it were a sphere of radius R D 8M.

1.5.2 Massless Particles

In the case of massless particles, the Lagrangian is normalised to zero and thus reads

2L D �
�
1 � 2M

r

�
Pt2 C

�
1 � 2M

r

��1
Pr2 C r2

� P�2 C sin2 � P�2
�

D 0 ; (1.111)

and the Euler-Lagrange equations relative to the coordinates t and � are conservation
laws, with E D �pt and l D p�

Pt D E

.1 � 2M=r/
; P� D l

r2
: (1.112)

The equation corresponding to the r coordinate comes from L D 0:

Pr2 D E2 � l2

r2

�
1 � 2M

r

�
: (1.113)

The equivalence principle implies that the photon trajectory is independent of its
energy. This can be seen by introducing a new affine parameter �0 D l� and the
photon impact parameter b D l=E, so that the previous equations can be rewritten

Pt D E

b .1 � 2M=r/
; (1.114)

3Note that 4M < bmax < 1 and that bmax ! 1 when v2
1

! 0. All particles are accreted or
deflected.
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P� D 1

r2
; (1.115)

Pr2 D 1

b2
� 1

r2

�
1 � 2M

r

�
D 1

b2
� Vph.r/ : (1.116)

The effective potential in this case has a maximum of 1=.27M2/ at r D 3M,
which corresponds to the critical impact parameter bc D 3

p
3M, so that the capture

cross section for a photon from infinity is

�ph D 27�M2 : (1.117)

The orbit at r D rph D 3M is the only circular orbit for a photon of impact parameter
bc and is usually referred to as the “light ring”.

An interesting question is whether the direction of emission plays a role in the
propagation of a photon in the vicinity of a black hole. Also in this case we need
to use the measurements made by locally static observers. For such observers the
photon will propagate to infinity if either if v Or > 0, or if v Or < 0 and b > 3

p
3 (a

photon can be shot towards a black hole and yet escape), where v Or is the local photon
velocity in the r direction and v Oav Oa D v OrvOr C v

O�v O� D 1. Let  denote the angle
between the direction of propagation and the radial direction, so that vOr D cos 
and v O� D sin . It then follows that an ingoing photon escapes to infinity if

v
O� D sin D b

r

�
1 � 2M

r

� 1
2

>
3
p
3M

r

�
1 � 2M

r

� 1
2

: (1.118)

Conversely, an outgoing photon emitted between r D 2M and r D 3M escapes to
infinity if

sin <
3
p
3M

r

�
1 � 2M

r

� 1
2

: (1.119)

1.5.3 Kerr Black Holes

In 1963, that is, almost 50 years after Schwarzschild’s work, Kerr found a stationary
solution to the Einstein equations in vacuum, which describes the spacetime of a
black hole of total mass M and angular momentum J [12]. This solution, which
is also known as the Kerr black-hole solution and was later proven to be unique,
reduces to the Schwarzschild solution in the limit of zero angular momentum.
Since it includes the contributions of rotation, the Kerr black hole is not spherically
symmetric, but axisymmetric about the direction of the angular momentum vector
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of the black hole; furthermore, it is no longer a static solution, but a stationary one.4

Due to the ubiquitous presence of rotation in astrophysical systems, this solution is
considered to be the most realistic for studying any physical process that takes place
in the vicinity of a black hole. Unfortunately, no analogue to exists for the Kerr
solution, which is unique in vacuum, but whose exterior in non-vacuum spacetimes
depends on the properties of the matter source, e.g., mass and angular momentum
distribution in the case of a relativistic star.

The line element for a Kerr black hole of mass M and angular momentum S in
Boyer-Lindquist coordinates is

ds2 D �
�
1 � 2Mr

˙

�
dt2 � 4aMr sin2 �

˙
dtd� C ˙

�
dr2 C˙d�2C

C
 

r2 C a2 C 2a2Mr sin2 �

˙

!
sin2 �d�2; (1.120)

where a WD S=M is the angular momentum per unit mass of the black hole (a=M 2
Œ�1; 1	) and

� WD r2 � 2Mr C a2 ; ˙2 WD r2 C a2 cos2 � ; (1.121)

Clearly, the metric (1.120) reduces to the Schwarzschild metric (1.70) when a D 0.
Unlike in the Schwarzschild solution, where the surfaces of infinite redshift and

of the event horizon coincide, the Kerr solution has two surfaces of infinite redshift,
again obtained by imposing gtt D 0, and are given by the condition

rS ;˙ D M ˙
p

M2 � a2 cos2 � : (1.122)

The event horizons, on the other hand, can be determined from the divergence of the
metric function grr and thus from setting � D 0, which then yields the two surfaces

reh;˙ D M ˙
p

M2 � a2 ; (1.123)

where the ˙ sign denotes the outer (C) and inner (�) event horizon, respectively.
Note that in the Schwarzschild limit reh;� D 0, and reh;C D 2M, as expected (see
also Fig. 1.5).

The region between rS;C, which is also called the ergosphere, and reh;C is
also referred to as the ergoregion, since no static observers (i.e., observers seen
as non-rotating from infinity) can exist and the whole spacetime is dragged into
synchronous corotation by the black hole. This purely relativistic effect, which is
also known as frame dragging, does not apply only to the ergoregion (where the

4The metric components are still independent of time but the solutions are affected by a time
reversal, i.e., by a coordinate transformation t ! �t.
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Fig. 1.5 Relevant radii for
equatorial orbits in a Kerr
spacetime. Shown as a
function of the dimensionless
spin of the black hole, a=M,
are respectively: the radii of
the outer and inner event
horizons reh;˙, the radii of
the marginally stable photon
orbits rph, the radii of the
marginally bound photon
orbits rmb, and the radii of the
marginally stable orbits rms.
Continuous and dashed lines
help distinguish between
prograde and retrograde
orbits, respectively [figure
taken from [1]]

corotation is unavoidable even for photons), but extends to the whole spacetime,
although it becomes progressively weaker far from the black hole. As a result,
an observer with zero angular momentum at infinity, or Zero Angular Momentum
Observer (ZAMO), will not move radially towards the black hole, but will be set into
rotation as seen from infinity. The importance of the ergosphere lies in that it can
host physical processes that extract rotational energy from the black hole [2]. To see
this, consider a particle with generic momenta

m
dt

d
D pt D gttpt C gt�p� ; (1.124)

m
d�

d
D p� D g�tpt C g��p� ; (1.125)

and thus with angular velocity

˝ WD d�

dt
D p�

pt
: (1.126)

If the particle has zero angular momentum at spatial infinity, then p� D 0 and using
the expression above it follows that

˝ D g�t

gtt
D !.r; t/ D 2Mra

.r2 C a2/2 � a2� sin2 �
: (1.127)
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In other words, the particle will acquire an angular velocity (1.127) as it approaches
the rotating black hole. The Lense-Thirring angular velocity !.r; t/ is therefore the
manifestation of the dragging of inertial frames and it decays as r�3, thus more
rapidly than the monopole component of the gravitational field.

As done for the Schwarzschild spacetime, it is possible to study the geodesic
motion of test particles in the Kerr metric to gain insight into its properties. The
particle motion in this case is far more complicated and, in addition to the energy and
angular momentum, pt D �E and p� D l, a new constant of motion appears, i.e., the
Carter constant [2]. Furthermore, the motion is planar only in the case of equatorial
orbits, whose qualitative properties remain similar to the ones already encountered
for a Schwarzschild spacetime. Hence, for simplicity I will concentrate here on the
simplest cases of (planar) equatorial orbits (i.e., with � D �=2) and considering
mostly massive particles. The corresponding Lagrangian is then given by

2L D �
�
1 � 2M

r

�
Pt2 � 4aM

r
Pt P� C r2

�
Pr2 C

�
r2 C a2 C 2a2M

r

�
P�2 D �m2

0 ;

(1.128)

so that the geodesic equations are

Pt D 1

�

��
r2 C a2 C 2a2M

r

�
E � 2Mal

r

�
; (1.129)

P� D 1

�

��
1 � 2M

r

�
l C 2Ma

r
E

�
: (1.130)

Equation (1.128) is then rewritten as follows

r3Pr2 D E2.r3C2Ma2Ca2r/�4aMEl�l2.r�2M/�m2r� D QV.E; l; r/ ; (1.131)

so that circular orbits correspond to energies and angular momenta

QE D r2 � 2Mr ˙ a
p

Mr

r.r2 � 3Mr ˙ 2a
p

Mr/
1
2

; (1.132)

Ql D ˙
p

Mr.r2 ˙ 2a
p

Mr C a2/

r.r2 � 3Mr ˙ 2a
p

Mr/
1
2

; (1.133)

where the plus sign correspond to co-rotating orbits and the minus to counter-
rotating ones. Circular orbits then exist from infinity to the limit radius where the
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energy diverges

rph D 2M

�
1C cos

�
2

3
cos�1

�
˙ a

M

���
; (1.134)

and these can even be at the horizon (i.e., rph D M) for corotating particles and a
so-called “extremal” Kerr black hole (i.e., one with a D M).

A marginally bound circular orbit is the orbit with the largest specific angular
momentum and at rest at infinity. For r > rph, circular orbits are bound for

r > rmb D 2M 	 a C 2
p

M.M 	 a/ ; (1.135)

For each value of the black-hole spin a=M, stable circular orbits exist from spatial
infinity down to the marginally stable orbit, or ISCO, given by

rms;˙ D rISCO D M
h
3C Z2 	p

.3� Z1/.3C Z1 C 2Z2/
i
; (1.136)

where

Z1 WD 1C .1 � a2/1=3


.1C a/1=3 C .1 � a/1=3

�
; (1.137)

Z2 WD
q
3a2 C Z21 : (1.138)

Special values for the marginally stable radii rms are simple to compute and are
given by (cf., Fig. 1.5)

rms D
8<
:
6M for a=M D 0 ;

M for a=M D 1 ;

9M for a=M D �1 :
(1.139)

Figure 1.5 shows a useful summary of the relevant radii for equatorial orbits in
a Kerr spacetime. Reported as a function of the dimensionless spin of the black
hole, a=M, are respectively: the radii of the outer and inner event horizons reh;˙, the
radii of the marginally stable photon orbits rph, the radii of the marginally bound
photon orbits rmb, and the radii of the marginally stable orbits rms. Continuous and
dashed lines help distinguish between prograde and retrograde orbits, respectively.
Note that for a=M D 1, i.e., for an extremal Kerr black hole, a number of radii for
prograde orbits tend to coincide, i.e., rms D rph D reh;C D M (obviously, the same
happens for retrograde orbits around black holes with a=M D �1).

As a final remark, I note that Kerr black holes are also much more efficient in
extracting energy. Indeed, since stable circular orbits exist down to the horizon,
they can have there extremely small energies and as small as QEms D 0:577. As a
result, a particle accreting from spatial infinity down to the ISCO of an extremal
Kerr black hole will have lost an amount of energy E D .1� QEms/ D 0:43, implying
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a conversion of �43% of the binding energy. This enormous efficiency explains
why models of accretion discs onto Kerr black holes represent the best candidates
to explain the vast amounts of energy radiated in active galactic nuclei (AGN).

1.6 Black Holes Produced from Binary Mergers

Despite the almost unnatural simplicity with which the problem can be formulated
(black holes are after all the simplest macroscopical objects we know), the final
evolution of a binary system of black holes is an impressively complex problem
to solve. At the same time, this very simple process plays a fundamental role
in astrophysics, in cosmology, in gravitational-wave astronomy, and of course in
general relativity. Recent progress in numerical relativity initiated by the works in
[13–15], have made it now possible to compute the different stages of the evolution,
starting from the inspiral at large separations, for which post-Newtonian (PN)
calculations provide an accurate description, through the highly relativistic merger,
and finally to the ringdown.

As long as the two black holes are not extremal and have masses which are not too
different from each other, no major technical obstacle now prevents the solution of
this problem in full generality and with an overall error which can be brought down
to less than 1% or less. Yet, obtaining such a solution still requires a formidable
computational power sustained over several days. Even for the simplest set of
initial data, namely those considering two black holes in quasi-circular orbits, the
space of parameters is too vast to be explored entirely through numerical-relativity
calculations. Furthermore, many studies of astrophysical interest, such as many-
body simulations of galaxy mergers, or hierarchical models of black-hole formation,
span a statistically large space of parameters and are only remotely interested in the
evolution of the system during the last few tens of orbits and much more interested
in determining the properties of the final black hole when the system is still widely
separated.

In order to accommodate these two distinct and contrasting needs, namely that
of sampling the largest possible space of parameters and that of reducing the
computational costs, a number of analytical or semi-analytic approaches have been
developed over the last couple of years. In most of these approaches the inspiral and
merger is considered as a process that takes, as input, two black holes of initial
masses M1, M2 and spin vectors S1, S2 and produces, as output, a third black
hole of mass Mfin, spin Sfin and recoil velocity vkick. Mathematically, therefore,
one is searching for a mapping between the initial seven-dimensional space of
parameters (i.e., the one containing the six spin components Sj

1;2 and the mass ratio
q WD M2=M1) to two a five-dimensional one, i.e., the one containing the three
components of the final spin vector, the magnitude of the recoil velocity, and the
mass of the final black hole. Clearly this is a degenerate mapping (two different
initial configurations can lead to the same final one) and it would seem a formidable
task to accomplish given the highly nonlinear features of the few last orbits. Yet, all
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of these studies have shown that the final spin vector and the final recoil velocity
vector, can be estimated to remarkably good accuracy if the initial parameters are
known [16–24].

The second part of this Chapter is therefore dedicated to illustrate how it is
possible to predict the spin and mass properties of the black hole produced in a
binary merger simply on the basis of the properties of initial black holes. The
discussion I will provide does not want to be exhaustive nor complete and some
of the most recent work, e.g., [25, 26], will not be presented in detail. Rather, the
presentation will be mostly pedagogical and aimed at providing a basic description
and a series of references where additional information can be found. In particular,
after adopting a specific recipe to describe how to compute such properties via a
simple algebraic expression [21, 27], I will explore its predictions in the large space
of parameters. All of the considerations made here apply to binary systems that
inspiral from very large separations and hence through quasi-circular orbits. Such
configurations are the ones more likely to occur astrophysically since any residual
eccentricity is lost quickly by the gravitational-radiation reaction. Much of the text
in the following has been taken from [25, 27, 28].

1.6.1 Modelling the Final Spin

A number of analytical approaches have been developed over the years to determine
the final spin from a binary black hole coalescence [29–33]. A first line of research
has exploited the motion of test particles in black hole spacetimes [17, 34]. A second
approach, instead, has focused on the derivation of analytic expressions which
would model the numerical-relativity data but also exploit as much information as
possible either from perturbative studies, or from the symmetries of the system when
this is in the weak-field limit [16, 18–21, 24, 35–37]. In this sense, these approaches
are not blind fits of the data, but, rather, use the numerical-relativity data to construct
a physically consistent and mathematically accurate modelling of the final spin.

The common ground shared by these second approaches is in the assumption
that the final spin vector afin, when seen as the function afin D afin.a1; a2; �/, where
a1;2 D S1;2=M2

1;2 are the two dimensionless spin vectors (ja1;2j 2 Œ0; 1	), can be
expressed as a Taylor expansion around a1 D a2 D � D 0. Given that ja1;2j �
1, this may seem as a mathematically reasonable assumption and the expectation
that the series is convergent over the whole space of parameters as a legitimate
one. However, this remains an assumption, and different routes have been chosen
to constrain the coefficients in the expansion invoking more mathematically-based
considerations [18, 23, 24], or more physically-based considerations [16, 20, 21].

Here, however, I will concentrate on reviewing the approach which, with a
five physically reasonable assumptions and with five free coefficients to be fixed
from the numerical data, leads to a formula that can model generic initial spin
configurations and mass ratios, thus covering all of the seven-dimensional space
of parameters [16, 20, 21]. In essence, the approach developed in [16, 20, 21, 27]
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amounts to considering the dimensionless spin vector of the final black hole as given
by the sum of the two initial spins and of a “third” vector parallel to the initial orbital
angular momentum when the binaries are widely separated. This “third” vector is an
intrinsic “property” of the binary (it will be shown below that this is essentially the
orbital angular momentum not radiated), thus depending on the initial spin vectors
and on the black holes mass ratio, but not on the initial separation. The formula
for the final spin then simply describes the properties of this vector in terms of the
initial parameters of the binary and of a set of coefficients to be determined from a
comparison with numerical simulations.

Let us now consider in more detail how to derive such a formula and consider
therefore a generic binary of black holes with masses M1;M2, mass ratio q, spins
S1;S2 and orbital angular momentum L. Let also where ˛; ˇ and � be the vector
cosines among the different vectors, i.e.,

cos˛ WD Oa1 � Oa2 ; cosˇ WD Oa1 � OL ; cos � WD Oa2 � OL ; (1.140)

where the “hats” are used to represent unit vectors. A schematic representation of
the different vectors and angles is shown in Fig. 1.6.

As mentioned above, five assumptions are needed in order to make the problem
tractable analytically and these are listed in what follows. I recall that when the
black holes have spins that are aligned with the orbital angular momentum L, the
numerical-relativity results are accurately described by Rezzolla et al. [21]

afin D Qa C Qa�.s4 Qa C s5� C t0/C �.2
p
3C t2� C t3�

2/ ; (1.141)

Fig. 1.6 Schematic representation of the binary system and of the angles between the different
spin vectors S1, S1 and the orbital angular momentum L. The dynamics of the binary is summarised
on the left
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where � WD M1M2=.M1 C M2/
2 is the symmetric mass ratio and Qa WD .a1 C

a2q2/=.1Cq2/. The five coefficients t0, t2, t3, s4 and s5 in (1.141) can be determined
straightforwardly by fitting the results of the numerical-relativity calculations.
However, an additional condition can be employed by using the results obtained
by Scheel et al. [38] for equal-mass non-spinning black holes and thus enforce that
for a1 D a2 D 0; � D 1=4 and to the claimed precision

afin D
p
3

2
C t2
16

C t3
64

D 0:68646˙ 0:00004 : (1.142)

This leaves only four unconstrained coefficients, whose value can be fixed by a
comparison with numerical-relativity simulations to obtain

s4 D �0:1229˙ 0:0075 ; s5 D 0:4537˙ 0:1463 ;

t0 D �2:8904˙ 0:0359 ; t3 D 2:5763˙ 0:4833 ; (1.143)

with an agreement relative to the numerical-relativity (NR) data jaNR
fin � afit

finj �
0:0085. Using the constraint (1.142) we then also obtain t2 D �3:5171 ˙ 0:1208.
Note that because expression (1.141) provides information over only 3 of the 7
dimensions of the parameter space, I will next show how to cover the remaining
4 dimensions and thus derive an expression for afin for generic black hole binaries
in quasi-circular orbits. Following the spirit of [21, 27], we make the following
assumptions:

(i) The mass Mrad radiated to gravitational waves can be neglected i.e., Mfin D
M WD M1 C M2. The radiated mass could be accounted for by using
the numerical-relativity data for Mfin [39] or extrapolating the test-particle
behavior [40]. The reason why assumption (i) is reasonable is that Mrad is
largest for aligned binaries, but these are also the ones employed to fit the
free coefficients (1.143). Therefore, Mrad is approximately accounted for by
the values of the coefficients. In Section 1.6.3 I will discuss in detail how to
estimate Mrad.

(ii) The norms jS1j, jS2j, jQlj do not depend on the binary’s separation r, with Ql
being defined as

Ql.r/ WD Sfin � ŒS1.r/C S2.r/	 D L.r/ � Jrad.r/ ; (1.144)

where S1.r/, S2.r/ and L.r/ are the spins and the orbital angular momentum
at separation r and Jrad.r/ is the angular momentum radiated from r to the
merger. Clearly, S1, S2 and Ql can still depend on r through their directions.
While the constancy of jS1j and jS2j is a very good assumption for black holes,
which do not have an internal structure, the constancy of jQlj is more heuristic
and based on the idea that the merger takes place at an “effective” innermost
stable circular orbit (ISCO), so that jQlj can be interpreted as the residual orbital
angular momentum contributing to Sfin.
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(iii) The final spin Sfin is parallel to the initial total angular momentum J.rin/ WD
S1.rin/ C S2.rin/ C L.rin/. This amounts to assuming that Jrad.rin/ k J.rin/.
It replaces the assumption, made in [21], that Jrad.rin/ k L.rin/, which is
only valid for a smaller set of configurations. We note that this assumption
is motivated by PN theory: Within the adiabatic approximation, the secular
angular-momentum losses via gravitational radiation are along the total angular
momentum J [41]. This is because as L rotates around J, the emission
orthogonal to J averages out. Note that since afin k J.rin/, the angle �fin between
the final spin and the initial orbital angular momentum L.rin/ is given by

cos �fin D OL.rin/ � OJ.rin/ : (1.145)

(iv) The angle between L and S WD S1 C S2 and the angle between S1 and S1 are
constant during the inspiral, although L and S precess around J.

At 2.5 PN order, (iii) and (iv) are approximately valid for any mass ratio
if only one of the black holes is spinning, and for M1 D M2 if one neglects
spin-spin couplings. In both cases, in fact, S and L essentially precess around
the direction OJ, which remains nearly constant [41], and the angle between
the two spins remains constant as well. The only case in which (iii) and
(iv) are not even approximately valid is for binaries which, at some point
in the evolution, have L.r/ � �S.r/. These orbits undergo the so-called
“transitional precession” [41], as a result of which OJ changes significantly.
Because transitional precession happens only if L and S are initially almost
anti-aligned with jLj > jSj, it affects only a very small region of the parameter
space.

(v) When the initial spin vectors are equal and opposite and the masses are
equal, the spin of the final black hole is the same as for nonspinning binaries.
Besides being physically reasonable—reflecting the expectation that if the
spins are equal and opposite, their contributions cancel out—this assumption
is confirmed by numerical-relativity simulations and by the leading-order PN
spin-spin and spin-orbit couplings.

Making use of these assumptions, it is then possible to derive an expression for
the final spin. Let us first using (i) to write (1.144) as

afin D 1

.1C q/2
�
a1.r/C a2.r/q2 C l.r/q

	
; (1.146)

where afin D Sfin=M2 and l WD Ql=.M1M2/. Using (ii), the final-spin norm is

jafinj D 1

.1C q/2

h
ja1j2 C ja2j2q4 C 2ja2jja1jq2 cos˛

C 2
�ja1j cosˇ.r/C ja2jq2 cos �.r/

	 jljq C jlj2q2
i1=2

: (1.147)
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Note that because of the assumption (iv), the angle ˛ does not depend on the
separation and is simply the angle between the spins at the initial separation, rin,
of the numerical-relativity simulations. The angles ˇ and � are instead functions of
the binary’s separation, but this dependence cancels out in the linear combination
in which they appear in (1.147), which is indeed, within the assumptions made,
independent of the separation and which can therefore be evaluated at r D rin. To see
this, let us consider expression (1.147) at the effective ISCO, that is, a fictitious final
separation before the merger takes place. There, Jrad.rISCO / D 0 by definition and
therefore l.rISCO / D L.rISCO/. As a result, ˇ.rISCO / [�.rISCO/] are simply the angles
between S1 [S2] and L at the ISCO. Using now assumption (iv), we can write part
of (1.147) as

ja1j cosˇ.rISCO/C ja2jq2 cos �.rISCO / D .OL � S/ISCO=M2
1

D .OL � S/=M2
1 D ja1j cos Q̌.r/C ja2jq2 cos Q�.r/ ;

(1.148)

where Q̌ and Q� are the angles between the spins and L at any separation r and thus
also at r D rin

cos Q̌ WD Oa1 � Ol ; cos Q� WD Oa2 � Ol : (1.149)

This proves our previous statement: the dependence on r that ˇ and � have in
expression (1.147) is canceled by the linear combination in which they appear.
Stated differently, the final-spin norm is simply given by expression (1.147) where
ˇ.r/ ! Q̌.rin/ and �.r/ ! Q�.rin/. Thus, one does not need to worry about the
angles between Oa1;2 and Ol but simply about the angles between Oa1;2 and Ol at r D rin,
which are easy to compute.

Finally, we need to compute jlj and for this we proceed like in [21] and match
expression (1.147) at r D rISCO with (1.141) for parallel and aligned spins [˛ D
ˇ.rISCO/ D �.rISCO/ D 0], for parallel and antialigned spins [˛ D 0, ˇ.rISCO/ D
�.rISCO/ D �], and for antiparallel spins which are aligned or antialigned [˛ D
ˇ.rISCO/ D � , �.rISCO/ D 0 or ˛ D �.rISCO/ D � , ˇ.rISCO/ D 0]. As noted in
[21], this matching is not unique, but the degeneracy can be broken by exploiting
assumption (v) (i.e., by imposing that jlj does not depend on a1;2 when a1 D �a2
and q D 1) and by requiring for simplicity that jlj depends linearly on cos˛, cosˇ
and cos � . Using these constraints and (1.148) we obtain again an expression valid
for any separation and hence for r D rin

jlj D 2
p
3C t2� C t3�

2

C s4
.1C q2/2

�ja1j2 C ja2j2q4 C 2ja1jja2jq2 cos˛/
	

C
�

s5� C t0 C 2

1C q2

��
ja1j cos Q̌.rin/C ja2jq2 cos Q�.rin/

�
: (1.150)
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In summary, the combination of expressions (1.147) and (1.150) provide a simple
and algebraic route to compute the properties of the full spin vector of a black hole
resulting from the merger of a binary system in quasi-circular orbit.

1.6.2 Exploring the Space of Parameters

In what follows I discuss in some detail the predictions of expressions (1.147)
and (1.150) for some simple cases and highlight how to extract interesting physical
considerations.
– Unequal mass, aligned/antialigned equal spins –
If the black holes have unequal mass but spins that are equal, parallel and
aligned/antialigned with the orbital angular momentum, i.e., ja1j D ja2j D a,
˛ D 0 Iˇ D � D 0; � , the prediction for the final spin is given by the
simple expression (1.141) [20], where cosˇ D ˙1 for aligned/antialigned spins.
Note that since the coefficients in (1.141) are determined by fits to the numerical
data and the latter is scarcely represented at very large spins, the predictions of
expression (1.141) for nearly maximal black holes are essentially extrapolations
and are therefore accurate to a few percent at most. As an example, when a D 1,
the formula (1.141) is a non-monotonic function with maximum afin ' 1:029 for
� ' 0:093; this clearly is an artefact of the extrapolation.

The global behaviour of the final spin for unequal-mass and aligned/antialigned
equal-spin binaries is summarised in Fig. 1.7, which shows the functional depen-
dence of expression (1.141) on the symmetric mass ratio and on the initial spins.
Squares refer to numerical-relativity values as reported in [19, 20, 42–46], while
circles to the EMRL constraints. A number of interesting considerations can now be
made:

(a) Using expression (1.141) it is possible to estimate that the minimum and
maximum final spins for an equal-mass binary are afin D 0:3502 ˙ 0:03 and
afin D 0:9590 ˙ 0:03, respectively. While the value for the maximum spin is
most likely underestimated the minimum value is expected to be much more
accurate than the estimate in [22], which tends to underestimate the final spin
for a . �0:3.

(b) Using expression (1.141) it is straightforward to determine the conditions under
which the merger will lead to a final Schwarzschild black hole. In practice this
amounts to requiring afin.a; �/ D 0 and this curve is shown in Fig. 1.8 with a
blue dashed line (cf. also the red dashed line in Fig. 1.7). Binaries on the curve
produce Schwarzschild black holes, while binaries above the curve start with a
positive total angular momentum and end with a positive one; binaries below the
curve, on the other hand, start with a positive total angular momentum and end
with a negative one, i.e., with a global flip. Several numerical simulations have
been carried out to validate this condition [20, 46] and all of them have shown
to produce black holes with afin . 0:01 (cf. squares in Fig. 1.7 with � ' 0:16).
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Fig. 1.7 Global dependence of the final spin on the symmetric mass ratio and on the initial
spins as predicted by expression (1.141) for equal-mass, aligned/antialigned equal-spin binaries.
Squares refer to numerical-relativity values, while circles to the extreme mass-ratio limit (EMRL)
constraints. Indicated with a (red) dashed line is the locus of points leading to a Schwarzschild
black hole (i.e., afin D 0), while (green) solid lines mark the region leading to a “spin-flip”
(i.e., afina < 0) [figure taken from [28]]

Fig. 1.8 Set of initial spins and mass ratios leading to a final Schwarzschild black hole: i.e.,
afin.a; �/ D 0. Indicated with a star is a numerical example leading to afin D 0:005 [figure adapted
from [20]]

Overall, the behaviour captured by expression (1.141) shows that in order to
produce a nonspinning black hole it is necessary to have unequal-masses (the
largest possible mass ratio is � ' 0:18) and spins antialigned with the orbital
angular momentum to cancel the contribution of the orbital angular momentum
to the total one.

(c) Using expression (1.141) it is also straightforward to determine the conditions
under which the merger will lead to a “spin-flip”, namely when the newly
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Fig. 1.9 Critical values of
the initial spin and mass ratio
leading to a final black hole
having the same spin as the
initial ones i.e.,
afin.a; �/ D a. A
magnification is shown in the
inset, where the
dashed/non-dashed region
refers to binaries
spun-down/up by the merger
[figure taken from [20]]

formed black hole will spin in the direction opposite to that of the two initial
black holes. Mathematically this is equivalent to determine the region in the
plane .a; �/ such that afin.a; �/ a < 0 and it is shown in Fig. 1.9 as limited by
the red dashed line. Overall, it is clear that a spin-flip can take place only for
very large mass ratios if the black holes are initially rapidly spinning and that
small mass ratios will lead to a spin-flip only for binaries with very small spins.

(d) Finally, using expression (1.141) it is also possible to determine the conditions
under which the merger will lead to a final black hole with the same spin as the
initial ones. This amounts to requiring that afin.a; �/ � a D 0 and only a very
small portion of the .a; �/ plane does satisfy this condition (cf. Fig. 5 of [20]).
For equal-mass binaries, for instance, the critical value is acrit & 0:946 and no
spin-down is possible for � . 0:192. Because of the minuteness of the region
for which afin < a, black holes from aligned-spins binaries are typically spun-
up by mergers. As it will be shown also in the following Section, this statement
is true also for other configurations and is probably true in general.

– Equal-mass, aligned/antialigned unequal spins –
Equally interesting is to consider the prediction for the final spin in the case in which
the initial black holes have equal mass but unequal spins that are either parallel or
antiparallel to the orbital angular momentum, i.e., for q D 1 and ˛ D 0; � Iˇ D
0; � I � D 0; � . Setting 2ja1j cosˇ D a1 C a2 in expression (1.147) we obtain the
simple expression for the final spin in these cases [16]

afin.a1; a2/ D p0 C p1.a1 C a2/C p2.a1 C a2/
2 ; (1.151)
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where the coefficients p0; p1 and p2 are given by

p0 D
p
3

2
C t2
16

C t3
64

' 0:6869 ; p1 D 1

2
C s5
32

C t0
8

' 0:1522 ;

(1.152)

p2 D s4
16

' �0:0081 : (1.153)

Note that the coefficients p0; p1; p2 and s4; s5; t0; t2; t3 were obtained through
independent fits of two distinct data sets. The fact they satisfy the conditions (1.152)
within the expected error-bars is an important consistency check.

When seen as a power series of the initial spins, expression (1.151) suggests
an interesting physical interpretation. Its zeroth-order term, p0, can be associated
with the (dimensionless) orbital angular momentum not radiated in gravitational
waves and thus amounting to �70% of the final spin at most. Interestingly, the
value for p0 is in very good agreement with what is possibly the most accurate
measurement of the final spin from this configuration and that has been estimated to
be afin D 0:68646˙ 0:00004 [47]. Similarly, the first-order term in (1.151), p1, can
be seen as the contributions from the initial spins and from the spin-orbit coupling,
amounting to �30% of the final spin at most. Finally, the second-order term, p2,
can be seen as accounting for the spin-spin coupling, with a contribution to the final
spin which is of �4% at most.

Another interesting consideration is possible for equal-mass binaries having
spins that are equal and antiparallel, i.e., q D 1, a1 D �a2. In this case,
expressions (1.147) and (1.150) reduce to

jafinj D jlj
4

D
p
3

2
C t2
16

C t3
64
: (1.154)

Because for equal-mass black holes which are either nonspinning or have
equal and opposite spins, the vector l does not depend on the initial spins,
expression (1.154) states that jljM2

fin=4 D jljM2=4 D jljM1M2 is, for such systems,
the orbital angular momentum at the effective ISCO. We can take this a step further
and conjecture that jljM1M2 is the series expansion of the dimensionless orbital
angular momentum at the ISCO also for unequal-mass binaries which are either
nonspinning or with equal and opposite spins. The zeroth-order term of this series
(namely, the term 2

p
3M1M2) is exactly the one predicted from the EMRL.

– Generic (misaligned) binaries: unequal mass, unequal spins –
When the binaries are generic, namely when the initial spins are oriented in generic
directions and the two masses are different, the spin expressions (1.147), (1.150)
does not reduce to a simple expression and the analysis of the physical implications
becomes more complex.

Much more challenging is also the numerical solution in these cases, partly
because they are computationally more expensive (no symmetries can be exploited
to reduce the computational domain), and partly because the evolutions start at a
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finite separation which does not account for the earlier evolution of the orbital angu-
lar momentum vector and of the spins (both of which precess). In addition, because
the final spin is oriented in directions which are in principle arbitrarily far from the
main coordinate lines, the calculation of the inclination angle from the properties
of the final apparent horizon is often non-trivial and suitable definitions need to
be introduced (see, e.g., [42]). Overall, however, expressions (1.147), (1.150) are
able to capture the behaviour of numerical-relativity calculations with errors that
are .1%.

1.6.3 Modelling the Final Mass

In this final Section I will describe briefly another algebraic expression that has been
derived to compute the energy radiated in gravitational waves and hence the final
mass of the black hole [25]. It is useful to start recalling that when deriving a simple
algebraic formula that expresses, with a given precision, the mass/energy radiated
by a binary system of black holes, two regimes are particularly well-understood.
On the analytic side, in fact, the test-particle limit yields predictions that are well-
known and simple to derive. On the numerical side, the simulations of binaries with
equal-masses and spins aligned or antialigned with the orbital angular momentum
are comparatively simpler to study, and have been explored extensively over the last
few years. Hence, it is natural that any attempt to derive an improved expression for
the radiated energy should try and match both of these regimes.

Let us therefore start by considering the test-particle limit and, in particular, a
Kerr spacetime with mass M1 and spin parameter a WD S1=M2

1 , and a particle (or
small black hole) with mass M2 on a equatorial circular orbit with radius r 
 M1.5

To first approximation (i.e., for mass ratios q WD M2=M1 � 1), the particle will
inspiral towards the black hole under the effect of gravitational-wave emission,
moving slowly (“adiabatically”) through a sequence of equatorial circular orbits
until it reaches the innermost stable circular orbit (ISCO), where it starts plunging,
eventually crossing the horizon. The energy Erad emitted by the particle during the
inspiral from r 
 M1 to the moment it merges with the central black hole can be
written as

Erad

M
D Œ1 � QEeq

ISCO
.a/	 � C o.�/ ; (1.155)

QEeq
ISCO
.a/ D

s
1 � 2

3 Qreq
ISCO .a/

; (1.156)

Qreq
ISCO
.a/ D rms;˙ ; (1.157)

5Without loss of generality, we can assume that the particle moves on a prograde orbit (i.e. in the
positive-� direction), and let the spin of the Kerr black hole point up (a > 0) or down (a < 0).
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where Qreq
ISCO
.a/ is the equatorial marginally stable circular orbit around a Kerr black

hole and thus its expression is the same as in (1.136).
Here, QEISCO and QrISCO are respectively the energy per unit mass at the ISCO and

the ISCO radius in units of m1, while the remainder, o.�/, contains the higher-order
corrections to the radiated energy.6 These corrections account, for instance, for the
conservative self-force effects, which affect the ISCO position and energy, but also
for the deviations from adiabaticity, which arise because of the finiteness of the mass
m2 and which blur the sharp transition between inspiral and plunge, and, more in
general, for the energy emitted during the plunge and merger phases.

If the particle is initially on an inclined (i.e., non-equatorial) circular orbit,
gravitational-wave emission will still cause it to adiabatically inspiral through a
sequence of circular orbits. Also, the inclination of these orbits relative to the
equatorial plane, which can be defined as [48]7

cos.�/ WD Lzp
Q C L2z

; (1.158)

with Q and Lz being respectively the Carter constant and the azimuthal angular
momentum, will remain approximately constant during the inspiral [48, 49]. As in
the equatorial case, the particle plunges when it reaches the ISCO corresponding
to its inclination �. Unlike in the equatorial case, though, the radius of the ISCO
as a function of a and � can only be found numerically. An analytical expression,
however, can be derived if one considers only the spin-orbit coupling of the particle
to the Kerr black hole, i.e., if one considers small spins a � 1. In that case, in
fact, one can explicitly check [using, for instance, equations (4)–(5) of [49]] that the
ISCO location and energy depend only on the combination a cos.�/, so that at O.a/2,
the generalisation of expressions (1.155)–(1.157) to inclined orbits is given by

Erad

M
D Œ1 � QEISCO.a; �/	 � C o.�/ ; (1.159)

QEISCO.a; �/ �
s
1 � 2

3 QrISCO .a; �/
; (1.160)

QrISCO.a; �/ � Qreq
ISCO
.a cos.�// ; (1.161)

where Qreq
ISCO

is given by (1.157). Expressions (1.159)–(1.161) reduce to Eqs. (1.155)–
(1.157) in the case of equatorial orbits (� D 0) and are therefore exact in that limit,
with the exception of the higher-order terms in �.

6I here use the Landau symbol o, so that f D o.g/ indicates that f=g ! 0 when g ! 0. Similarly,
we will also use the Landau symbol O , where instead f D O.g/ indicates that f=g ! const when
g ! 0.
7As in the equatorial case, we can consider only prograde orbits (0 � � � �=2) and allow a to be
either positive or negative.
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As mentioned above, another case in which we know accurately the total energy
emitted in gravitational waves is given by binaries of black holes with equal masses
and spins aligned or antialigned with the orbital angular momentum. Reisswig et
al. [50], for instance, showed that the energy emitted by these binaries during their
inspiral (from infinite separation), merger and ringdown can be well described by a
polynomial fit [25, 50]

Erad

M
D w0 C w1.a1 C a2/C w1

4
.a1 C a2/

2 ; (1.162)

where the fitting coefficients were found to be [25]

w0 D 0:04827˙ 0:00039 ; w1 D 0:01707˙ 0:00032 ; (1.163)

I recall that the coefficient w0 can be interpreted as the nonspinning orbital contri-
bution to the energy loss (which is the largest one and �50% of the largest possible
mass loss, which happens for a1 D a2 D 1), w1 can instead be interpreted as the
spin-orbit contribution (which is .30% of the largest possible loss), while w1=4 can
be associated to the spin-spin contribution (which is .20% of the largest possible
loss). Expression (1.162) reproduces all of the available numerical-relativity data
for the energy emitted by equal-mass binaries with aligned or antialigned spins, to
within �0:005M (except for almost maximal spins). Note, however, that higher-
order terms in the spins may be needed in Eq. (1.162) to reproduce the data for
nearly extremal spins.

Using therefore the knowledge of the radiated energy from the test-particle
limit and from the equal-mass aligned/antialigned configurations, it is possible to
derive an expression valid for generic binaries. As a first step, let us note that
the PN binding energy of an equal-mass binary of spinning black holes depends
on the spins, at 1.5 PN order, i.e., at leading order in the spins, only through the
combination

OL � .S1 C S2/
M2

D ja1j cosˇ C ja2j cos �

4
: (1.164)

One can therefore attempt to extend expression (1.162) to generic equal-mass
binaries simply by replacing a1 C a2 with ja1j cosˇ C ja2j cos � , i.e., obtaining

Erad

M
D w0 C w1.ja1j cosˇ C ja2j cos �/

C w1
4
.ja1j cosˇ C ja2j cos �/2 : (1.165)

Because in the test-particle limit the angle ˇ becomes the angle between the spin
S1 of the Kerr black hole and the orbital angular momentum of the particle, thus
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coinciding with the angle � defined in (1.158), it is natural to rewrite Eqs. (1.159)–
(1.161) as

Erad

M
D Œ1 � QEISCO. Qa/	 � C o.�/ ; (1.166)

QEISCO. Qa/ D
s
1 � 2

3 Qreq
ISCO . Qa/ ; (1.167)

where we have defined

Qa WD
OL � .S1 C S2/

M2
D ja1j cosˇ C q2ja2j cos �

.1C q/2
: (1.168)

If we now assume that the higher-order term o.�/ in Eq. (1.166) is quadratic in �,
we can determine it by imposing that we recover the equal-mass expression (1.165)
for q D 1, thus obtaining the final expression

Erad

M
D Œ1 � QEISCO. Qa/	 �

C 4 �2Œ4w0 C 16w1 Qa. Qa C 1/C QEISCO . Qa/ � 1	 ; (1.169)

where QEISCO. Qa/ is given by (1.167). By construction, therefore, expression (1.169)
has the correct behavior both in the test-particle limit and for equal-mass binaries.
It should be noted that the fitting coefficients [given by (1.163)] are obtained using
only a subset of the numerical-relativity data, that is, those for equal-mass binaries
with aligned/antialigned spins. Yet, expression (1.169) is in reasonable agreement
with all the published data, both at large and small separations. This is best seen
in Fig. 1.10, where we plot the final mass of the remnant for all the published data
for binaries with a1 cosˇ D a2 cos � (blue circles), as well as the predictions of
our expression when applied to the “small-separation” initial data of the simulations
(meshed surface). Clearly, spinning binaries with unequal mass ratios are essentially
absent, and simulations for such binaries will provide a very significant check of our
expression (1.169). Nevertheless, the simple functional dependence shown by the
available data, whose behaviour can be well captured with low-order polynomials is
quite remarkable.

The graphical representation of the data in Fig. 1.10 highlights that the largest
radiated energy, Erad.a D 1/=M D 9:95%, is lost by binaries with equal-mass
and maximally spinning black holes with spins aligned with the orbital angular
momentum. Hence, black-hole binaries on quasi-circular orbits are among the most
efficient sources of energy in the universe. Note, however, that equal-mass binaries
are not always the systems that lose the largest amount of energy. Indeed, unequal-
mass systems with sufficiently large spins aligned with the angular momentum
can lead to emissions larger than those from equal-mass binaries but with large
antialigned spins. For instance, a binary with � D 0:15 and a1 D a2 D 1 will
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Fig. 1.10 Mass of the final black hole, Mf � M � Erad, and corresponding fit for all the published
binaries with a1 cosˇ D a2 cos � . Note the simple functional dependence of the Erad, whose
behaviour can be well captured with low-order polynomials

radiate more than a binary with � D 0:25 and a1 D �a2. This is simply due to the
interplay of the last two terms in expression (1.169).
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Chapter 2
Warp Propagation in Astrophysical Discs

Chris Nixon and Andrew King

Big whorls have little whorls, which feed on their velocity. And
little whorls have lesser whorls, and so on to viscosity.
– Adaptation of The Siphonaptera by Lewis Richardson

Abstract Astrophysical discs are often warped, that is, their orbital planes change
with radius. This occurs whenever there is a non-axisymmetric force acting on
the disc, for example the Lense–Thirring precession induced by a misaligned
spinning black hole, or the gravitational pull of a misaligned companion. Such
misalignments appear to be generic in astrophysics. The wide range of systems
that can harbour warped discs—protostars, X-ray binaries, tidal disruption events,
quasars and others—allows for a rich variety in the disc’s response. Here we review
the basic physics of warped discs and its implications.

2.1 Introduction

In general gas possesses angular momentum and orbits any central massive object
such as a protostar or a black hole rather than falling directly on to it. The test
particle orbits are not closed ellipses but form rosettes, as perturbations such as
nearby stars or gas self-gravity mean that the potential is not perfectly Keplerian.
These orbits intersect and so the gas shocks, causing dissipation of orbital energy
through heating and radiation. However angular momentum must be conserved
during this process. Therefore the gas settles into the orbit of lowest energy for
the given angular momentum—a circle. In most cases the gas does not all have
the same specific angular momentum and forms a disc rather than a ring. More
generally gas has angular momentum with a spread of directions and settles into a
warped disc, where the disc plane changes with radius. An initially planar disc may
become warped through a variety of different effects. If the disc is misaligned with
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respect to a component of the potential these include Lense–Thirring precession
from a spinning black hole [2], gravitational torques from a companion [45] or
torques from a misaligned magnetic field [19]. An initially aligned disc may also
be unstable to warping through processes such as tides [26] or radiation from the
central object [50].

A planar (unwarped) disc (Pringle and Rees [53] and Pringle [48]) evolves under
the action of a turbulent viscosity. For simplicity this is often parameterised in the
Shakura–Sunyaev form where the viscosity is written as � D ˛csH [54]. The most
likely process driving viscosity is the magnetorotational instability (MRI) suggested
by Balbus and Hawley [1]. This instability requires a weakly magnetised disc whose
angular velocity decreases outwards, as is the case in Keplerian and near-Keplerian
discs. The cartoon picture of the instability has two parcels of gas, at different radii,
joined by a magnetic field loop. The inner parcel rotates faster, so the loop becomes
stretched. The magnetic field acts to slow the inner parcel and speed up the outer
parcel, thus transferring angular momentum from the inner parcel to the outer parcel.
The net effect is that the inner parcel moves inwards through the disc and the outer
parcel moves outwards. In reality this process drives turbulence in the disc, which
then ultimately transports angular momentum.

The Shakura–Sunyaev viscosity parameterisation is a simple but powerful and
intuitively appealing way of characterising the angular momentum transport in a
planar disc. As described in [48] any turbulent eddies must have a lengthscale
smaller than the disc thickness H. Moreover any supersonic turbulent motions
in the disc shock and rapidly dissipate, giving a maximum signal velocity of
approximately the sound speed cs. So the maximal viscosity expected in a disc is
�max D csH, and we can write the viscosity with the Shakura–Sunyaev ˛ parameter
as � D ˛csH, but it is important to realise that ˛ need not be constant in position
or time. For fully ionised discs, observations suggest that ˛ � 0:1 � 0:4 [16].
Numerical simulations of the MRI without net vertical field do not yet reproduce
this result, instead finding ˛ � a few � 10�2 e.g. [56] . In other systems where the
gas is neutral or only partially ionised, observations allow the MRI-driven ˛ to be
lower. For example, observations of protostellar discs find ˛ � 0:01 e.g. [12], but
in dead zones this can be much lower (� 10�4, e.g. Fleming and Stone [5], Simon
et al. [55], Gressel et al. [11], and Martin and Lubow [30]).

In a planar disc, where the gas is essentially hydrostatic in the vertical direction,
the evolution is usually described by a one-dimensional viscosity which communi-
cates angular momentum radially. However, in a warped disc the communication
of angular momentum is three-dimensional. Early investigations (e.g. Bardeen and
Petterson [2], Hatchett et al. [13], and Petterson [46, 47]) simply assumed that the
viscosity could be described by the same � in all directions, and the evolution
equations they derived did not conserve angular momentum.

The first self-consistent investigation was provided by Papaloizou and
Pringle [44]. They give two derivations of the equations of motion for a warped disc.
The first (their Sect. 2) is close to the previous derivations in the literature, but gives
the correct form of the internal torques required to conserve angular momentum.
The second derivation (their Sect. 3) is the first to take the internal fluid dynamics
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into account. This derivation is the first to discuss the radial pressure gradients
induced by the warp that oscillate at the orbital frequency, creating a resonance.
Therefore the torque corresponding to the vertical shear (or more precisely the
radial communication of the component of angular momentum parallel to the local
orbital plane) depends inversely1 on the viscosity parameter, ˛, as the resonant
forcing drives shearing motions which are damped by ˛ (see Sect. 4.1 of [25] for
a discussion). An implication of [44] is that simple approaches to the dynamics
of warped discs can miss subtle but important effects. But the complex nature of
warped discs makes both simple and elaborate approaches necessary—for physical
insight and to get the physics right. We shall see that the simple approach can
capture most, but not all, of the relevant physics.

The work of [44] formally requires H=R < ˛ � 1, and most restrictively,
that the disc tilt (Uz=R˝ in their notation, where Uz is the perturbed vertical
velocity) be � H=R. This last restriction requires that the warp be so small as to
be unobservable. So to make progress, Pringle [49] derived an equation of motion
using only conservation laws, and not the internal hydrodynamics, but retaining full
generality in terms of the disc tilt. It is this approach that we will follow in deriving
the evolution equations below (Sect. 2.2.1.1). These equations are formally valid
(in that they conserve angular momentum) for arbitrary disc warps and viscosities
(�1,�2). However, this approach offers no insight into determining the values of the
viscosities or how they depend on any system parameters such as warp amplitude.
In this sense its treatment of the internal fluid dynamics is “naive” [44].

For this reason, Ogilvie [37] started from fully three-dimensional fluid equations
(compressible, with a locally isotropic [‘Navier–Stokes’] viscosity), and derived
a full evolution equation for a warped disc with these properties. This derivation
confirmed the equations derived by Pringle, with two important differences. First,
the Pringle equations did not include a torque that tends to cause rings to precess
when tilted with respect to their neighbours, and second, the torque coefficients
are determined as a function of warp amplitude and ˛. The extra torque between
rings is not required for angular momentum conservation, so it does not appear in
the derivation in [49] and the torque coefficients are determined by the local fluid
dynamics between rings. Papaloizou and Pringle [44] derived the torque coefficients
for the azimuthal and vertical shear terms in the linear approximation, obtaining
the well-known result that ˛1 D ˛ and ˛2 D 1= .2˛/. Ogilvie [37] extends
this to the fully nonlinear regime, determining the coefficients for arbitrary warp
amplitudes. This work marked a great advance in the understanding of warped discs.
Ogilvie [38] extends these equations to include the effects of viscous dissipation and
radiative transport.

In cases where ˛ < H=R the evolution of a warped disc is not controlled by
viscosity. Pressure forces dominate and can propagate warping disturbances through
distances> R as waves. This occurs because the ˛ damping is too slow to damp the
wave locally (on scales of order H) allowing it to propagate. A second, more subtle,

1See the definition of the quantity A at the end of page 1189 of [44].
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condition must also be satisfied for wave propagation to be efficient—the disc must
be close to Keplerian, i.e.

ˇ̌
1 � �2=˝2

ˇ̌
. H=R see e.g. Sect. 5.1 of [58]. This

is required to make the forcing resonant in a warp (Keplerian implies the orbital,
vertical and epicyclic frequencies are the same, ˝ D ˝z D �). The first dedicated
study of the behaviour of warped discs in this wave-like regime is [43]. This paper
showed that these waves, driven by pressure gradients, propagate at approximately
half the local sound speed. Further, the propagation behaviour becomes diffusive
when a small viscosity ˛ � H=R is included. Lubow and Pringle [29], and
Korycansky and Pringle [17] investigated the propagation of a more general class of
waves in discs. As discussed by Pringle [52] it is possible to recover the warp wave
propagation velocity Vw D cs=2 (for ˛ D 0) from this approach.

In this review we discuss the two types of warp propagation, through waves and
diffusion. We discuss the evolution equations, their interpretation and derivation.
We describe the viscosity, and in particular the relation between the small scale
turbulent ˛ viscosity and its role in shaping the effective viscosities which control
the dynamics of warped discs. Finally we discuss some major results and some
outstanding problems in understanding this complex and subtle accretion disc
behaviour.

2.2 Warp Propagation

In a planar accretion disc there is only azimuthal shear acting in the disc driving a
turbulent viscosity which transports angular momentum. In a warped disc there is a
second ‘vertical’ type of shear and so the rate of orbital shear is not simply parallel
to the local disc normal l, but is given by Ogilvie and Latter e.g. [42]

S D R
@s
@R

D R
d˝

dR
l C R˝

@l
@R
; (2.1)

where s .R; t/ D ˝.R/l .R; t/ is the local orbital angular velocity. We can think of
the evolution of a warped disc as controlled by two torques, communicating angular
momentum along and normal to the local orbital plane respectively.

The usual planar disc viscosity is driven by azimuthal shear and is assumed to
result in a turbulent ˛ viscosity acting against the shear and transporting angular
momentum radially. The second viscosity associated with the warp is induced by
radial pressure gradients driven by the misalignment of neighbouring rings (see
Fig. 2.1). In a near-Keplerian disc the forcing frequency (epicyclic) and the orbital
frequency resonate to produce a significantly enhanced torque, whose response is
controlled by ˛. This torque is driven by pressure and results in the launch of a
pressure wave. When ˛ > H=R this is damped locally and the evolution is diffusive,
but when ˛ < H=R the wave can propagate large distances. This leads to two types
of warp propagation in discs; diffusive and wave-like. These are the subject of the
next two sections.
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Fig. 2.1 This figure (cf Fig. 10 of Lodato and Pringle[25]) illustrates the radial pressure gradient
induced by a warp. The top and bottom panel show cross-sections of the same two neighbouring
rings of gas, but at different azimuths �. The shaded regions indicate the higher pressure around the
local midplane, and the arrows show the resultant pressure gradient when the rings are misaligned.
The azimuthal angle around a ring is measured in the direction of the flow from the descending
node where � D 0. The tilted rings cross at the nodes, and so at these points are in aligned
contact as usual. At all other azimuths the ring midplanes do not fully line up, causing a region of
overpressure above or below the midplane. Each gas parcel feels an oscillating pressure gradient
as it orbits in the warp

The convenient coordinates for describing a warped disc are a hybrid of
cylindrical polars and Euler angles. A local annulus (of width � H) is described
by cylindrical polars .R; �; z/, but each ring of the disc is tilted in three-dimensional
space described by the (spherical) Euler angles ˇ .R; t/ and � .R; t/, which corre-
spond to the local disc tilt and twist respectively. So we define the disc unit tilt
vector as

l D .cos � sinˇ; sin � sinˇ; cosˇ/ : (2.2)

The local angular momentum vector for the disc is L D ˙R2˝l, where ˙ is the
disc surface density. The (Cartesian) surface of the disc is

x .R; �/ D R.cos� sin � C sin � cos � cosˇ; sin � sin � cosˇ � cos� cos �;

� sin� sinˇ/ ; (2.3)
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where the azimuthal angle � is zero at the descending node and increases in the
direction of the flow. Further quantities such as the elements of surface area then
follow as described in [50]. Vector calculus in these warped disc coordinates is
comprehensively summarised in Sect. 2 of [37]. We next derive the equations of
motion for warped accretion discs.

2.2.1 Diffusion

Here we consider diffusive discs with H=R < ˛ < 1. We derive the equations
of motion in a simple way, allowing significant insight into the problem. This
derivation is naive to the internal fluid dynamics in a warped disc [44], and so we
compare and contrast with the results of more complete derivations that are too
involved for our purposes here e.g. [37].

2.2.1.1 Evolution Equations

The derivation here is a three-dimensional version of the standard planar accretion
disc equations (e.g. Frank et al. [8] and Pringle [48]), so we briefly recall the planar
case first.

We assume the disc is planar and that all quantities can be azimuthally averaged
(requiring that the radial velocity is much smaller than the orbital velocity, VR �
V�) so all quantities are functions of radius R and time t only. The disc has surface
density˙ .R; t/, radial velocity VR .R; t/, and angular velocity˝ .R; t/. We consider
an annulus of gas between R and R C �R. The mass in this annulus is 2�R�R˙ .
Conservation of mass relates the rate of change of this mass to the net flow of mass
into or out of the annulus

@

@t
.2�R�R˙/ D .2�RVR˙/R � .2�RVR˙/RC�R : (2.4)

Rearranging and taking the limit as �R ! 0 gives the continuity equation (mass
conservation) for a disc

@˙

@t
C 1

R

@

@R
.R˙VR/ D 0 : (2.5)

Similarly we can derive the equation expressing angular momentum conservation.
The angular momentum of an annulus is 2�R�R˙R2˝ and the rate of change of
angular momentum is the net flux of angular momentum plus the net torques:

@

@t

�
2�R�R˙R2˝

	 D �
2�R˙R2˝VR

	
R

� �
2�R˙R2˝VR

	
RC�R

CG .R C�R/� G .R/ : (2.6)
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Again by rearranging and taking the limit �R ! 0 we have the angular momentum
equation

@

@t

�
˙R2˝

	C 1

R

@

@R

�
R˙VRR2˝

	 D 1

2�R

@G

@R
; (2.7)

where G .R; t/ is the internal disc torque resulting from the disc viscosity. The
viscous force is proportional to the rate of shearing

F D 2�RH�R
d˝

dR
; (2.8)

where Rd˝=dR is the rate of shear and � is the dynamic viscosity, related to the
kinematic viscosity by � D ��, where � is the density. Using � D ˙=H the force is

F D 2�R�˙R
d˝

dR
: (2.9)

Note that this force acts in the azimuthal direction, and thus when taking the cross
product with the radial vector to generate the torque we see that the torque acts in
the correct direction (i.e. on the z-component of angular momentum—we are only
considering a planar disc so far). So we can write the internal viscous torque as

G D 2�R�˙R˝ 0R (2.10)

and the equation expressing angular momentum conservation as

@

@t

�
˙R2˝

	C 1

R

@

@R

�
R˙VRR2˝

	 D 1

R

@

@R

�
�˙R3˝ 0	 : (2.11)

Multiplying Equation 2.5 by R2˝ and then subtracting from Eq. 2.11 we
rearrange for VR to get

VR D
@
@R

�
�˙R3˝ 0	

R˙ @
@R .R

2˝/
: (2.12)

Substituting this into (2.5) gives

@˙

@t
D 1

R

@

@R

 
@
@R



�˙R3 .�˝ 0/

�
@
@R .R

2˝/

!
; (2.13)

which for the Keplerian potential,˝ D p
GM=R3, is

@˙

@t
D 3

R

@

@R

�
R1=2

@

@R

�
�˙R1=2

	�
: (2.14)
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This is a diffusion equation, so if we know the viscosity � we know how a
distribution˙ .R; t/ will evolve. So far we have said nothing about the disc viscosity
or what drives it—we will return to this in detail in Sect. 2.2.3.

Assuming the disc is in vertical (z-direction) hydrostatic balance we derive the
vertical structure by equating the relevant components of the pressure force and
gravity

1

�

@P

@z
D � GM

R2 C z2
zp

R2 C z2
; (2.15)

where the last factor is the geometrical sine term. If the disc is thin we have
jzj � R, so

1

�

@P

@z
D �GMz

R3
: (2.16)

Now if we assume an equation of state, e.g. isothermal P D c2s�, then

c2s
@ ln �

@z
D �GMz

R3
(2.17)

and we can integrate to get

� D �0 exp

��GMz2

2c2s R3

�
D �0 exp

�
� z2

2H2

�
; (2.18)

where we have introduced the disc scale-height H D cs=˝ . From this we see that a
disc in vertical hydrostatic equilibrium has H=R D cs=V� , so for thin discs the flow
is supersonic.

We can now attempt a similar calculation for a warped disc, where the internal
torques act in three dimensions. This calculation draws heavily on [44] and [49].
The local angular momentum density is L .R; t/ D ˙R2˝l .R; t/, where l .R; t/ is a
unit vector in the direction of the ring angular momentum. The mass conservation
equation is the same as for the flat disc (2.5). Angular momentum conservation is
expressed as

@

@t

�
2�R˙R2˝�Rl

	 D �
2�R˙R2˝VRl

	
R

� �2�R˙R2˝VRl
	

RC�R

CG .R C�R/� G .R/ ; (2.19)
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where G is the three-dimensional internal torque. Again rearranging and taking the
limit �R ! 0 we have

@

@t

�
˙R2˝l

	C 1

R

@

@R

�
˙VRR3˝l

	 D 1

2�R

@G
@R

: (2.20)

The viscous torque has two obvious components. The .R; �/ stress contributes a
torque acting in the direction of l (cf 2.10)

G1 D 2�R�1˙R˝ 0Rl ; (2.21)

where �1 is the azimuthal shear viscosity. For two neighbouring rings with l and
lC�l, the .R; z/ stress acts to communicate�l between the rings, so the torque acts
in the direction @l=@R. The .R; z/ torque is then

G2 D 2�R
1

2
�2˙R2˝

@l
@R
; (2.22)

where �2 is the vertical shear viscosity and the factor of a half comes from
integrating cos2 � (cf Fig. 2.1) across the ring [44]. There is also a third component
[37, 44] which we could write as

G3 D 2�R�3˙R2˝l � @l
@R
: (2.23)

But this defines an effective viscosity �3—this is not an appealing notation as this
term does not lead to diffusive behaviour. Instead this torque causes a ring to precess
if it is inclined with respect to its neighbours. This produces dispersive wave-like
propagation of the warp [37].

We combine (2.21), (2.22) & (2.23) to give the internal torque cf. Eq. 55 of [42]

G D 2�R˙R2˝

�
�1

�
˝ 0

˝

�
l C 1

2
�2
@l
@R

C �3l � @l
@R

�
: (2.24)

Now, putting this into (2.20) we have
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�2˙R3˝
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@R

�
(2.25)

C 1

R

@

@R

�
�3˙R3˝l � @l

@R

�
;

which is identical to that found in [49] except for the last term.
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Pringle [49] showed that this equation can be combined with (2.5) to eliminate
VR. This is done by taking the dot product of l with (2.25) and then subtracting
R2˝� Eq. (2.5) and using l � @l=@R D 0 and @=@R .l � @l=@R/ D 0 ) l � @2l=@R2 D
� j@l=@Rj2. This gives [49], Eq. 2.3

VR D
@
@R

�
�1˙R3˝ 0	 � 1

2
�2˙R3˝

ˇ̌
@l
@R

ˇ̌2
R˙ @

@R .R
2˝/

: (2.26)

We note that the extra torque derived by Ogilvie [37] does not have a component in
the direction of l (cf. Eq. 123 of Ogilvie [37]). This shows its precessional nature:
it causes neighbouring rings to change their planes, but does not drive any radial
flux of mass or angular momentum. Finally, substituting VR into (2.25), we get the
evolution equation for the disc angular momentum vector L
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�3˙R3˝l � @l

@R

�
: (2.27)

We see that this equation evolves both the disc shape l .R; t/ and surface density
˙ .R; t/ through the angular momentum vector L .R; t/ D ˙R2˝l. This equation is
almost exactly that derived by Pringle [49], with the addition of the last term derived
by Ogilvie [37]. The last term can also be found in the linear hydrodynamic analysis
of [44] where the warp diffusion coefficient is complex (see also Eq. 2.1 of Kumar
and Pringle [18]).2 This term leads to precession in the presence of a warp [37], but
its coefficient, �3, is smaller than �2 by a factor � ˛. Therefore in time-dependent
problems this term is often neglected e.g. Sect. 3.4 of [25]. However, in the case of
an inviscid non-Keplerian disc, this is the only non-zero internal torque Sect. 7.2
of [37].

If the rotation law and the torque coefficients (�1,�2,�3) are specified in terms
of the disc quantities, Eq. (2.27) can be solved numerically, conserving angular
momentum to machine precision by the method described in [49]. This has been

2See the definition of the quantity A at the end of page 1189 of [44]. In the linear equations it
is often convenient to assume the unit tilt vector l D �

lx; ly; lz

	
has lz � 1 and therefore adopt

complex equations for the disc tilt where e.g. W D lx C ily. In this case a diffusion coefficient with
non-zero real and imaginary parts has components in the direction of both @l=@R and l � @l=@R.
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used in many papers to explore the evolution of warped discs (e.g. Lodato and
Pringle [24], Nixon and King [35], Pringle [51], and Wijers and Pringle [58]).

The derivation of this equation was somewhat simplistic, as it did not take the
internal fluid dynamics into account [44]. So to check its validity [37] started from
the full three-dimensional fluid-dynamical equations and derived the equations of
motion (Equations 121 & 122 in Ogilvie [37]). Ogilvie [37] was able to confirm the
equations derived by Pringle [49], with two important refinements. First, the [49]
equations were missing the �3 term which makes neighbouring annuli precess if
they are tilted with respect to each other (included above), and second, the torque
coefficients are uniquely determined by the warp amplitude and ˛.

For comparison we give the evolution equations derived by Ogilvie, written in
our notation but retaining the Qi coefficient form. The mass conservation equation is

@˙

@t
C 1

R

@

@R
.R˙VR/ D 0 (2.28)

and angular momentum conservation is
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Q3˙

c2s
˝

R3˝l � @l
@R

�
;

where we have used the relation I D ˙c2s=˝
2 for the azimuthally averaged

second vertical moment of the density.3 We should compare these equations
with (2.5) & (2.25). The two sets of equations become identical given three relations
between the torque coefficients (�1; �2; �3) and the effective viscosity coefficients
(Q1;Q2;Q3) [23, 35], i.e.

�1 / ˛1 .˛; j j/ D ˝

R˝ 0 Q1 .˛; j j/ D �2
3

Q1 .˛; j j/ ; (2.30)

�2 / ˛2 .˛; j j/ D 2Q2 .˛; j j/ (2.31)

and

�3 / ˛3 .˛; j j/ D Q3 .˛; j j/ ; (2.32)

3Strictly speaking the rhs of this relation is missing a factor of order unity dependent on the warp
amplitude j j, as the forcing in a warp restricts the hydrostatic balance assumed in its derivation.
This affects the viscosity coefficients Q1;Q2;Q3 significantly for large j j, and so in this case we
must use the form of [38] taking this effect into account (Ogilvie, private communication).
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where j j D R j@l=@Rj is the warp amplitude and the first relation is given in
simplified form for the case of Keplerian rotation.

The coefficients Q1, Q2 & Q3 depend on the warp amplitude j j D R j@l=@Rj,
˛ and the orbital shear (see Figs. 3, 4 and 5 of Ogilvie [37]). In various limits their
approximate values can be obtained analytically (e.g. Sect. 7.3 of Ogilvie [37]) but
in general need to be computed numerically. For a complete generalisation of the
Shakura–Sunyaev theory of planar discs to diffusive warped discs, see [38] where
the effects of viscous dissipation and radiation transport are also included in the
viscosity coefficients.

The equations derived in this section, and those by Ogilvie [37, 38], hold when
˛ > H=R (damping the otherwise uncontrolled resonant response to the epicyclic
forcing) and when H=R � 1. However, the main uncertainty in modelling a ‘real’
astrophysical disc in this manner is the nature of the turbulence driving angular
momentum transport. The approach adopted above is supported by strong evidence
(analytical, numerical and observational) but it is certainly not beyond doubt. We
comment on this in more detail in Sect. 2.2.3 below.

2.2.2 Waves

The evolution equations for a wave-like disc were first derived by Papaloizou [43],
Demianski and Ivanov [3], and Lubow and Ogilvie[27]. All of these papers linearise
the fluid equations, and there is very little work on the nonlinear behaviour of wave-
like discs. Ogilvie [40] extends the equations into the weakly nonlinear regime, but
this has yet to be followed up in any detail. There is good reason to believe that
the nonlinear dynamics may well display many interesting features [10, 41, 42], but
there remains no fully nonlinear theory for warp propagation in this case. However,
the linear dynamics of wave-like discs is reasonably well understood and we discuss
this here.

2.2.2.1 Evolution Equations

The equations of [27] follow a similar notation to that used in Sect. 2.2.1.1 and so
we shall use that here also. The linearised equations of motion for a wave-like disc
are one for the conservation of angular momentum

˙R2˝
@l
@t

D 1

R

@G
@R

C T (2.33)

and one for the evolution of the internal torque
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The external torque T can arise from a variety of effects, but is zero if the disc is
precisely Keplerian and there are no external effects. The second term on the lhs
of (2.34) is also zero when the disc is Keplerian (˝ D ˝z D �). The third term
on the lhs describes damping of propagating waves, which occurs on a timescale
� 1= .˛˝/—we shall refer to this as ˛ damping. If we compare (2.33) to (2.20)
we can see that these equations make the assumption that ˙ .R/ is independent of
time and the radial velocity is zero—i.e. there is no diffusion of mass or advection
of angular momentum in these equations.

In the simplest case of an inviscid (˛ D 0) Keplerian disc the equations become
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and
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which can be combined into a single equation by eliminating G
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Equation 5 of [40] shows that when ˙H is independent of R, this can be recast
into a classical wave equation for the disc tilt. This shows that the wave speed is
Vw D cs=2 [43]. The wave speed can be evaluated in a similar way from equations
A53–A56 of [27] to give the more general result that V2

w D I˝2=4˙ .
With the equations in this reduced form (2.35 & 2.36) it is easy to see where the

terms come from. Equation (2.35) is a statement of angular momentum conservation
in the case where ˙ is independent of time and so VR D 0 (cf. Eq. 2.20).
Equation (2.36) expresses how the internal torque changes because of the pressure
applied by a warp, which might be written as @G=@t D RH:�V2

w:R
2˝:@l=@R, which

with � D ˙=H gives (2.36). This implies that each ring of the disc responds as if
hit by a pressure wave with velocity Vw. With such a simple approach to the internal
torque we cannot recover the wave speed, but this allows physical insight into the
disc response to a warp. By including a small ˛ damping of the wave propagation,
and any non-Keplerian terms due to the potential, we get the full evolution equations
derived rigorously by Lubow and Ogilvie [27].

Taking the (artificial) limit that ˛ is large in these equations (2.34) becomes

˛˝G D ˙R3˝
c2s
4

@l
@R
: (2.38)
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Substituting this into (2.33) gives

˙R2˝
@l
@t

D 1

R

@

@R

�
˙R3˝

c2s
4˛˝

@l
@R

�
: (2.39)

Now we can see that in the linear regime with �2 D csH=2˛ this torque is exactly
that derived to communicate the disc tilt in the diffusive case. This is not by chance;
the physics of the two terms is precisely the same in this approximation. It is
likely therefore that for specific (short) timescales one might use the linearised
wave equations with strong damping to model a linear diffusive disc see e.g. [4],
but that this approach is ultimately missing much of the physics in warped discs
(mass diffusion, advection of angular momentum and internal precession). Good
agreement between the approaches may be found in cases where these effects are
minimised by extra physics in the problem, for example where tidal torques inhibit
mass flow.

As a warp wave propagates in the disc it can lead to either a local or global
bending of the disc. For a single wave the criterion for this is effectively governed
by the wavelength (�) of the disturbance. For H � � < R the disc responds by
warping, but when � > R the wave is unable to bend the disc which instead responds
by tilting as a whole. This behaviour was observed in the simulations of [36] where
a warp was induced at the outer edge of a disc by a passing perturber. This warp had
a wavelength of approximately one third of the outer disc radius, leading to warped
outer regions. As the warp wave propagates inwards the inner disc (R < �) tilts as a
whole while remaining planar.

In wave-dominated discs there is also the possibility that a disc might respond
to a disturbance by globally precessing. In the paragraph above this clearly occurs
when � > Rout. However, it can also occur when the wave communication across
the entire disc is short compared to any precession time of the disc. In this case
the disc is able to share the precession generated at each radius across the entire
disc and respond as a cohesive whole. This has been observed in many simulations
e.g. [6, 7, 21], although there appears to be some ambiguity in the literature as to
the exact criteria for the onset of this behaviour. It is likely that it requires waves to
damp non-locally (effectively ˛ � H=R) and that the wave travel time across the
disc (� R=cs) should be shorter than any precession induced in the disc.

[31] pointed out that when only a small piece of the disc is simulated these
conditions can be artificially met, facilitating repeated global precession. This
occurs as the propagating wave reflects off the outer boundary, which in reality
should be orders of magnitude further out. This allows unphysical global precession.
Instead the wave should leave behind a steady disc shape e.g. [28]. In other cases,
discs may be kept radially narrow by extra physics such as tidal truncation, allowing
physical global precession e.g. [22]. Care must also be taken when simulating
warped discs, as the propagation of waves depends sensitively on the ratio of ˛
and H=R, these parameters must be accurately modelled for the system of interest.
Often thick discs are employed in simulations to increase vertical resolution, without
observational or theoretical motivation. Similarly the turbulent viscosity may not be
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modelled correctly if numerical affects (e.g. low resolution) lead to strong numerical
dissipation, or if the effective ˛ in simulations which resolve turbulence is smaller
than that implied by observations [16].

The main untouched area for wave-like discs is a thorough understanding of their
nonlinear evolution—Ogilvie [37] discusses this for the diffusive case. In the wave-
like case [40] extends the equations of [27] to the weakly nonlinear regime, but
the predictions made are yet to be tested by a hydrodynamics code. Also, large
warps may be hydrodynamically unstable for small ˛. Gammie et al.[10] predict
that such warps are subject to a parametric instability which leads to dissipation
and enhanced wave damping. More recently [41, 42] have developed a local model
for warped discs and have used this to explore the onset of turbulence in this
hydrodynamic instability. Such instabilities have not appeared so far in global
simulations, probably because of insufficient resolution and artificial dissipation
effects.

2.2.3 Viscosity

We have seen in the previous sections that the usual approach to implementing
a viscosity for warped discs is to adopt the ˛ parameterisation, where the local
stress is proportional to the pressure. This means that each component of the shear
(horizontal and vertical) is damped by viscous dissipation at the same average rates.
This is the origin of the term ‘isotropic viscosity’, but this does not imply that the
effective viscosities (torque coefficients �1, �2 & �3) are equal. Instead, the internal
structure of a warp means that these torque coefficients take very different values
that depend on the disc shear, ˛ and warp amplitude. For small ˛ and small warps,
�2 is significantly stronger because of the resonance between disc orbits and forcing
in a warp—the resonance is controlled by ˛ damping, so �2 is inversely proportional
to ˛. The angular momentum transport is mainly through Reynolds stresses rather
than viscous stresses, but this process is well described by a viscosity.4

Papaloizou and Pringle [44] and Ogilvie [37] assume that ˛ acts isotropically,
and this is responsible for the ˛2 / 1=˛ relation. However, it is not obvious that
this local isotropy holds for a viscosity driven by MHD effects, typically due to
the magnetorotational instability (MRI). Pringle [49] points out that the azimuthal
shear is secular, but that the vertical shear is oscillatory. This means that gas parcels
displaced by �R drift further and further apart, but those at the same radius, but
displaced by �z, simply oscillate. In the simplistic MRI picture it is then likely
that more energy is dissipated in the azimuthal viscosity, leading to a larger torque.
However, reduced dissipation in the vertical direction may lead to an uncontrolled

4There is a long history, in both the astronomical and fluids literatures, of modelling turbulent fluids
with effective viscosities.
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resonant response and thus a larger �2 torque. Thus simple arguments leave it
entirely unclear how the inclusion of MHD effects should change this picture.

If we instead assume that the MRI drives turbulence, and that the velocity field
is uncorrelated on scales � H (as seems probable from numerical simulations,
e.g. Fig. 14 of Simon et al. [56]) then the action of the turbulent viscosity seems
likely not to care about the direction of the shear on which it acts. This supports the
isotropic ˛ assumption.

The question of whether ˛ is isotropic has been studied with numerical [57] and
analytical [39] techniques. Both of these investigations conclude that the isotropic
˛ assumption is valid for an MRI–turbulent disc. There have also been attempts
to interpret the dynamics of warped discs by using observations. These currently
support the isotropic picture [15].

The viscosity assumption in the diffusive and wave-like cases are effectively the
same. As shown above, the term which describes ˛ damping of propagating waves
in (2.34) can be readily understood as exactly the �2 torque in (2.27). The physics
of both torques is the same—˛ damping controls the resonant response to radial
pressure gradients which force the gas at the local orbital frequency (when the disc
is Keplerian). When ˛ < H=R the disc responds by propagating a wave which
damps non-locally through ˛. For ˛ > H=R this can instead be thought of as the
wave being damped locally, and thus acting in a diffusive manner.

2.3 Conclusions

Astrophysical discs are often warped. This occurs when an initially planar disc is
misaligned to a component of the potential (e.g. the spin of a black hole, or the orbit
of a companion star) or when the disc becomes unstable to tilting by e.g. tidal [26]
or radiation [50] effects. The main extra physics in a warped disc is the inclusion
of a second component of the orbital shear which drives an oscillatory pressure
gradient in the fluid. In a near-Keplerian disc this results in a resonant response
which communicates the tilted component of angular momentum. As this response
is damped by an ˛ viscosity, it depends inversely on that viscosity. This behaviour
allows the dynamics of warped discs to split broadly into two regimes; one where
the warp propagates diffusively and the other where it propagates as waves.

The equations of motion in the diffusive case are well understood, in both the
linear and nonlinear regimes, when the viscous stress is proportional to the local
pressure (i.e. isotropic). The evolution equations were first derived by Papaloizou
and Pringle [44] and then extended to the fully nonlinear regime by Ogilvie [37].
This is generalised even further to include viscous dissipation and radiative transport
by Ogilvie [38].

The equations of motion in the wave-like case are only really understood in the
linear regime, again with an ˛ damping. The nonlinear case is difficult to explore
numerically as it requires modelling the disc with little dissipation, and thus high
resolution. However, detailed investigation into this case is likely to be fruitful in
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Fig. 2.2 Column density projection of the tearing disc structure in a simulation following the
method of [33] from [34]

revealing complex disc behaviour such as the parametric instability [10]. This is
relevant to protostellar discs where the disc turbulence may be heavily quenched in
dead zones [9].

There are many aspects of warped disc physics which are yet to be fully under-
stood, from the inclusion of MHD, radiation warping and self-gravity to nonlinear
hydrodynamics in strong warps. Very recently it has been shown that warped
discs are capable of breaking into distinct planes and that this can significantly
alter the disc’s behaviour [14, 33]. This evolution (see Fig. 2.2) has been observed
in a variety of codes, with different numerical methods and different physics
[7, 20, 21, 23, 32, 33, 35], so appears to be a generic feature of warped disc behaviour.
It has yet to be shown that an MRI turbulent MHD disc is capable of breaking, but
there has not yet been any simulation of a setup in which this would have been the
likely result.

Warped discs are relevant to a variety of astrophysical systems, including
protostars, X-ray binaries, tidal disruption events, AGN and others. Each of these
systems have different properties and environments which allow for a wide variety
in the disc’s response to a warp. Warps are often induced when a disc forms
misaligned to symmetry axes of the potential, for example the spin of a black hole
or the orbit of a binary. However, even initially planar discs can become warped
through a variety of effects, e.g. radiation warping, tidal torques, winds or magnetic
fields. Each of these problems and their implications are yet to be fully understood,
but with the growing computational power and complexity of physics employed in
numerical codes it is likely that many questions will be answered in the next few
years.
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Chapter 3
The Balance of Power: Accretion and Feedback
in Stellar Mass Black Holes

Rob Fender and Teo Muñoz-Darias

Abstract In this review we discuss the population of stellar-mass black holes
in our galaxy and beyond, which are the extreme endpoints of massive star
evolution. In particular we focus on how we can attempt to balance the available
accretion energy with feedback to the environment via radiation, jets and winds,
considering also possible contributions to the energy balance from black hole spin
and advection. We review quantitatively the methods which are used to estimate
these quantities, regardless of the details of the astrophysics close to the black hole.
Once these methods have been outlined, we work through an outburst of a black hole
X-ray binary system, estimating the flow of mass and energy through the different
accretion rates and states. While we focus on feedback from stellar mass black holes
in X-ray binary systems, we also consider the applicability of what we have learned
to supermassive black holes in active galactic nuclei. As an important control sample
we also review the coupling between accretion and feedback in neutron stars, and
show that it is very similar to that observed in black holes, which strongly constrains
how much of the astrophysics of feedback can be unique to black holes.

3.1 Introduction

Stellar mass black holes are the final phases of the evolution of the most massive
stars, which runs quickly (in a million years or less) from protostellar gas cloud,
through a brief main sequence to a final collapse (which may or may not be
accompanied by a supernova explosion). Many millions of such stellar remnants
are expected to exist in our galaxy alone, the vast majority of which remain
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undiscovered. Only a tiny subset, the tip of the tip of the iceberg, are revealed to
us via the extreme luminosities which can be produced via accretion.

These stellar mass black holes are the sites of the most extreme gravitational
curvature in the present-day universe, and potentially the best tests of general
relativity available to us [84]. However, in this review we will concentrate on what
are the outcomes of the accretion process, rather than the details of the astrophysics
which occur close to the event horizon. Somehow, the black hole contrives to feed
back to the surrounding universe a large fraction of the energy it could potentially
have swallowed, in this way acting to heat its environment rather than acting as
a sink. We can attempt to balance the budget of spin, fuel, advection, kinetic and
radiative feedback within a black box which contains the black hole and its accretion
flow, to try and discern the patterns which occur there. This is important across a
wide range of scales, comparable to the mass range of black holes themselves: from
heating of our local environment (there must be isolated black holes and neutron
stars within a few parsecs of us doing just this), to the feedback from AGN which,
it seems, regulated the growth of the most massive galaxies.

The outline of this review is as follows. We begin with a very simple introduction
to accretion, followed by an up to date picture of the phenomenology of accretion
and feedback associated with stellar mass black holes accreting in binary systems.
We will take the reader through the various methods used to try and estimate
the power associated with different forms of feedback (steady and transient jets,
accretion disc winds), and then run through the course of an X-ray binary outburst
to see how feedback varies and how the accumulated flavours of feedback stack
up against each other. We shall discuss the evidence that what we have learned
from stellar mass black holes may be applicable to AGN, which may be important
for galaxy formation. Finally, we shall wrap up with an up to date summary of
the relation between accretion and feedback in neutron stars, and show that it very
closely resembles that observed in black holes.

3.1.1 Accretion

Accretion is the process whereby an object captures matter as a result of its
gravitational attraction. The accreted matter has therefore necessarily fallen into
a deeper gravitational potential and energy is liberated. In the simplest case of an
object initially at rest and left to fall towards the gravitating object, the potential
energy converts to kinetic energy. If the central accreting object has, like nearly
everything in the universe, a surface, then this kinetic energy must convert into other
forms when the object is stopped at the surface. In the case of a black hole, our
simple infalling object would just cross the event horizon and vanish from our part
of the universe, advecting this kinetic energy.
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The energy change per unit mass in falling from infinity to a radius R outside of
a gravitating mass M is:

�E D �GM

R
C GM

1 D �GM

R

This demonstrates that the amount of liberated energy is proportional to the ratio
of mass to radius: more compact ! more efficient accretion. Figure 3.1 illustrates,
schematically and extremely simply, the release of energy via accretion, and the
resulting feedback to the environment in terms of radiation, jets and winds.

However, nearly all matter in the universe has angular momentum, which means
that it will not fall directly into the black hole. Simple thought experiments, detailed
theory, and numerical simulations suggest that in fact an accretion disc will form, in
which the accreting matter moves in to the central accretor via a set of essentially
circular orbits. Direct observational evidence for such discs exists in the form of
spatially and spectrally resolved rotating flows around supermassive and stellar mass
black holes. For a sample of the extensive background on this subject the reader is
directed to e.g. [1, 46, 77, 83, 90], references therein and citations thereof.

Fig. 3.1 Accretion and ejection. The gridded surface illustrates a simple Newtonian gravitational
potential. In (a) mass is accreted onto a central object, which results in the (isotropic, usually)
release of radiation to infinity. However, this liberated accretion energy can also feed back to
the environment via jets and winds. In (b) we illustrate (more stylistically than realistically) the
(anisotropic) loss of mass and energy in a jet from close to the central accretor, or in a wind further
out. If ejected mass is not to fall back, it needs to exceed the local escape velocity, which sets a
minimum speed. As a result, in order to eject all of the incoming mass back out to infinity you
would need a perfect engine and no other release of energy e.g. radiation. Much more likely is
either/both of a jet with a relatively low (compared to the inwards accretion rate) mass loading, or
ejection of significant mass from further out in the gravitational potential (wind), powered by the
central accretion of mass
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3.1.2 Stellar Mass Black Holes

The term stellar mass black holes refers to black holes in the mass range from
a few to perhaps 20 solar masses, i.e. those which could be direct endpoints of
the evolution of a single massive star and whose masses do not represent any
significant accumulation of mass via accretion or mergers (unlike, probably, many
supermassive black holes in active galactic nuclei).

The best evidence for stellar mass black holes comes from optical spectroscopy
of low mass X-ray binaries (where the low mass refers to the mass of the non-
compact mass donor, being typically less than one solar mass) in quiescence, when
the accretion disc is faint enough to allow the donor star to be detected and its radial
velocity variations at the orbital period revealed. In several cases the mass function,
an absolute minimum mass for the accretor, is well in excess of 3Mˇ, providing
strong evidence for the existence of black holes. For a subset of these systems, a
detailed modelling of their X-ray and/or optical fluxes as a function of time (light-
curves) allows estimation of the inclination of the binary, and subsequent constraint
of the black hole mass with an uncertainty as small as 10 % (e.g. [7]). This method
has yielded nearly 20 objects known as dynamical black holes; estimated physical
dimensions of these are presented in Fig. 3.2. Another �40 black hole candidates,
share a strong phenomenology with the previous class, which is different from that
observed from systems containing neutron stars, typically in the X-ray spectral and
variability properties (e.g. [72, 97]). We shall refer to these systems collectively as
the black hole X-ray binaries (BHXRBs).

The black hole discovery rate is currently limited by the (X-ray) outburst rate
of black hole binaries, which is very small (�2 per year) due to their low duty
cycles (fraction of time they are X-ray active, typically perhaps 1 %). Therefore, the
above number (�60) only accounts for a tiny fraction of the actual black hole binary
galactic population, thought to be above � 104 objects (e.g. [100]). They, similarly,
only represent a small amount out of the total number of stellar mass black holes
harboured in the Milky Way, that has been estimated to be in the range 108–109

([5, 96]). The actual number depends on the supernova rate across the life time
of our Galaxy and on details of the stellar evolution. Here, an important question to
address regards the maximum mass for a stellar remnant to still be a neutron star, and
the minimum to form a black hole. There is currently some discussion as to whether
or not there may be a mass gap between neutron stars—the most massive known has
�2Mˇ [14]—and stellar mass black holes (>4–5 Mˇ so far), but any conclusions
drawn are necessarily tentative due to uncertainty about selection effects and the
aforementioned, poor statistics (see e.g. discussion in [76]).
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Fig. 3.2 Twenty black hole binary systems scaled to our best current estimates of their physical
dimensions. Credit: Jerry Orosz (see http://mintaka.sdsu.edu/faculty/orosz/web/)

3.2 Patterns of Disc-Jet Coupling

The clear phenomenological connection between accretion and outflow in BHXRBS
has been detailed in many reviews over the past few years, and we refer the
interested reader to [22] and references therein. In short, there are a small number
of accretion ‘states’ which correspond to patterns of behaviour in X-ray spectra and
timing properties (as revealed in Fourier power spectra), and these seem to have a
well defined connection to modes of outflow; see Figs. 3.3 and 3.4.

http://mintaka.sdsu.edu/faculty/orosz/web/
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Fig. 3.3 Patterns of accretion:outflow in black hole X-ray binaries. The diagram presents X-ray
monitoring of the black hole binary GX 339-4, which completed the path A ! F on a timescale of
about 1 year. Hard X-ray states (to the right) are associated with (quasi-)steady jet production and
little or no winds. Conversely, the soft states to the left are associated with strong accretion disc
winds and no strong core jet. Transitions between hard and soft X-ray states are associated with
large, sometimes multiple, discrete ejection events. From [22], to which the interested reader is
directed for more references in this area, and which combined primarily the phenomenology first
described in [26, 80]
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Fig. 3.4 Soft- and hard-X-ray, as well as (estimated) bolometric flux from Cygnus X-1 across
state transitions in 1996. Importantly, although the source is at �2 % Eddington luminosity, there
is still less than a 50 % change in luminosity across the transition, implying that the hard state is
radiatively efficient. From [103]

As a function of time, an outburst progresses through the following stages:

• A ‘hard’ state, in which the X-ray spectrum is dominated by a component which
peaks around 100 keV is likely to originate in thermal comptonisation, although
there may be some contribution from jet (or other) synchrotron emission. This
state, associated with a powerful, quasi-steady jet, is associated with the initial
rise of the transient
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• At some X-ray luminosity, typically �10 % of the Eddington luminosity, the
source passes briefly through a phase or phases of transient discrete ejections,
and progresses to the ‘soft’ state. This state has an X-ray spectrum which peaks
at about 1 keV, probably arising from an optically thick accretion disc.

• In the ‘soft’ state there is a much weaker or non-existent core jet and a strong
accretion disc wind.

• Eventually (on average a handful of months later) the outburst fades and the
system switches back to the hard state, typically around 1 % of the Eddington
X-ray luminosity, and the wind switches off and the jet back on.

The jet phenomenology described above is rather well established via a large
(100s) number of radio observations, although many details remain to be filled in.
However, much more needs to be established about the duty cycle of the accretion
disc wind in the soft state, which is crucial to the calculations outlined next.

3.3 Feedback

The balance between black hole spin, the available accretion energy, advection, and
the radiative and kinetic feedback can be summarised as:

Pspin C Paccretion D Lbolometric C Lkinetic � Ladvected (3.1)

Where Pspin and Paccretion are the ‘input’ powers provided at any given moment
(which may change throughout an outburst) from the black hole spin and accretion
of mass, respectively. On the other side of the equation we have the ‘sink’ terms
for this power: Lbolometric is the bolometric radiative output, Lkinetic is the feedback
of kinetic energy to the environment (via jets and winds), Ladvected measures the
amount of available power which is actually advected across the black hole event
horizon. Obviously, Ladvected is a term unique to black holes. We further note that
while Paccretion � 0, the term Pspin can be positive or negative. While commonly
considered in terms of a rapidly spinning black hole having ‘extra’ power available
to put into e.g. a jet, a non-rotating black hole which begins to accrete will begin to
gain spin energy, and act as a sink for the available power. Spin-up and spin-down
of neutron stars is routinely observed in observations of X-ray pulsars (e.g. [4]). The
equation, being essentially a statement of the conservation of energy, is reminiscent
of the first law of thermodynamics (and is equally susceptible to the addition of
further terms).

As is common practice, we can write the available accretion power as

Paccretion D GM Pm
r

D � Pmc2 (3.2)
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Where � parametrises the accretion efficiency and Pm is the accretion rate. The
total kinetic feedback can be crudely divided into that associated with (relativistic)
jets and (non-relativistic) winds, since these appear to be the main modes, apparently
mutually exclusive, in black hole X-ray binaries:

Lkinetic D Ljet C Lwind (3.3)

Thus an expanded form of Eq. (3.1) can be written as:

Pspin C � Pmc2 D Lbolometric C Ljet C Lwind � Ladvected (3.4)

While the details of the inner accretion flow, including the jet formation region,
can potentially probe some of the most exciting astrophysics in the entire universe,
they are extremely hard to measure via the approaches outlined in this review.
However, what we can do is try to balance Eqs. (3.1), (3.4) to see how black holes
take available accretion energy and convert it into radiation and kinetic power which
affects the environment. As we shall see, we have the tools to estimate a number of
the above terms, and can make good progress towards understanding the balance
of power in accreting black hole. However, the fact that some of the terms are not
independent (in the ways they are estimated), and others evade easy estimation,
means that we are a long way from a comprehensive solution to this energy balance.

3.3.1 Radiation

This is in principle the easiest of the quantities to measure, at least at high accretion
rates (more than say 1 % of the Eddington accretion rate), where the radiative
output appears to be dominated by X-ray emission (naturally, considering the energy
release and size scale—see [8]). Bolometric corrections to the 1–10 keV emission
have been estimated to be �2 in the ‘soft’ X-ray state and �5 in the ‘hard’ state
(e.g. [60]). Considerable uncertainties exist regarding exactly how this bolometric
correction may change throughout an outburst, as the high-energy cutoff (typically
�100 keV in the hard state) may evolve significantly. On the other hand, the well-
measured bolometric luminosity of Cyg X-1 appears to change by less than 50 %
in the 1.3–200 keV band during a hard ! soft(/intermediate) state transition ([103];
see Fig. 3.4).

3.3.1.1 On Radiative Efficiency

While it is generally accepted that the soft, disc-dominated, accretion states should
be radiatively efficient, with � � 0:1, it is far less clear how radiatively efficient
the hard states are. A common interpretation of the hard (hot) states is that they are
advection-dominated, in which much of the available accretion energy is ‘trapped’
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in hot ions which cross the event horizon before they can radiate (e.g. [18, 30, 38]
and references therein). Interestingly (see below), such flows have been for a long
time tentatively associated with relativistic jets (e.g. [85]). In such flows the radiative
efficiency may drop with the accretion rate, such that

LX / Pmc (3.5)

where c > 1. A commonly accepted value is c � 2, which fits nicely into pictures of
accretion, radiative efficiency and feedback, considering the observed radio:X-ray
correlations in black hole (potentially inefficient) and neutron star (necessarily
efficient) binaries (see below as well as discussions in e.g. [12, 23]). However, the
lack of a dramatic jump in luminosity at the transition from the hard (hot) to soft
(cool) accretion flows, at least in Cyg X-1 (see previous section; Fig. 3.4) already
tells us that the radiative efficiency of the states must be comparable (at least in this
case, and at this luminosity). This can lead to difficulties in connecting the accretion
rate smoothly through an outburst (e.g. [87] and later in this review).

One additional frustration for observers is that at accretion rates below �1 % (of
the Eddington luminosity, in X-rays), the peak of the emission from the accretion
disc moves into the UV part of the spectrum, which is extremely hard to measure for
nearly all galactic X-ray binaries, as it corresponds to a peak in the absorption and
scattering of photons by dust in the interstellar medium (but see the case of XTE
J1118+480 where observations were made: [37]).

In summary, there is a lot of uncertainty as to how the radiative efficiency
evolves between the peak of an outburst and quiescence. In evaluating the black
hole outburst later in the review, we shall consider both radiatively efficient (c D 1)
and inefficient (specifically, c D 2) cases.

3.3.2 Jets

Jets from black hole X-ray binaries (BHXRBs), and indeed most classes of accreting
object, are mainly revealed via their radio emission. This is not necessarily because
they do not emit in other bands which are well observed, e.g. optical, X-ray, but
that in those bands it is hard to distinguish jet emission from that produced by other
processes (e.g. stars, accretion flows).

In black hole X-ray binaries the radio emission has essentially three ‘modes’,
whose connection to the accretion state is phenomenologically clear (see Sect. 3.2),
but can be summarised as:

• Steady jet: in the hard state, the radio emission appears quasi-steady, with a flat
spectrum
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• Transient ejections: during hard ! soft state transitions, radio flares are
observed which have been, in several cases, spatially resolved in blobs moving
away from the central source with bulk Lorentz factor 
 � 2.

• Off: in the soft state, the core radio jet appears to be completely off, with non-
detections a factor of �100 below the expected level for the hard state (the best
example is in [88])

In the following subsections we shall outline how to estimate the kinetic power
associated with each of these types of radio emission.

3.3.2.1 Steady Jets

In the hard X-ray state, flat-spectrum radio emission is seen whose flux density at
GHz frequencies scales with the 1–10 keV X-ray luminosity roughly as

Lradio / Lb
X (3.6)

where 0:6 � b � 0:7 for the best-sampled sources, in particular for the very well
sampled source GX 339-4, which is the subject of our detailed study later. Corbel
et al. [11] reports the state of the art for GX 339-4, which follows a correlation with
b D 0:62˙ 0:01. Figure 3.5 shows the radio:X-ray correlation for three black hole
binaries, including GX 339-4, as well as a much smaller sample of neutron stars.
Very obvious is the fact that, while GX 339-4 and V404 Cyg show a nice power-law
relation, in the black hole binary H1743-322 the situation is more complex. The
reason behind the ‘radio quiet’ branch which H1743-322 appears to follow at X-
ray luminosities above about 1036 erg s�1 is at present completely unclear, but this
phenomena has been seen in an increasing number of sources.

The key issue is the relation between a measured core (generally unresolved)
radio luminosity and the associated kinetic power, something which has been much
explored not only for BHXRBs but also for the radio cores of AGN. Körding
et al. [41] presented an approximate relation, calibrated on X-ray binaries but also
(tentatively) applied to the cores of some low Eddington ratio AGN:

Ljet � 4 � 1036
�

L8:6
1030

�12=17
(3.7)

where L8:6 is the radio luminosity calculated as

L8:6 D 4�d2�8:6F8:6 (3.8)

where d is the distance to the source and �8:6 D 8:6�109 is the frequency associated
with 8.6 GHz. In other words, this is the radio luminosity assuming a flat spectrum
to low frequencies.
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Fig. 3.5 The correlation between GHz radio flux density and 3–9 keV X-ray flux in the black
hole binaries GX 339-4, V404 Cyg and H1743-322 (from [13]). GX 339-4 and V404 show a very
clear correlation which for GX339-4 has been observed to be repeat very consistently between
multiple different hard states, indicating a remarkable stability in jet formation (see also [11] for
the complete data set on this source). H1743-322 is a clear example of a ‘radio quiet’ population
which appear to occupy a lower, steeper, track in the plane at high luminosities, possibly rejoining
the ‘radio loud’ track at LX � 0:1% Eddington. This track is close to the region of the diagram for
neutron stars, both in normalisation and slope (caveat rather few points for the neutron stars). The
underlying reason for two separate branches remains a mystery

As discussed in [41], this function is quite similar to those derived by other
means. As an example, in a recent review, present an almost identical relation
between radio core luminosity and inferred jet kinetic power,

Ljet � 1:6 � 1036
�

Lradio

1030

�0:81
(3.9)

which was based up a sample of AGN for which radio cores could be measured at
the same time as analysis of cavities and shocks in the surround medium. In other
words, current analyses are consistent with a single relation between core radio
luminosity and jet power across the mass range from BHXRBs to AGN. This is a
remarkable result, and is illustrated in Fig. 3.6.

A quick note on the radio:quiet branch of X-ray binaries such H1743-322
(Fig. 3.5): it may be that the above relations between radio luminosity and kinetic
power are entirely appropriate here, meaning that the jet power is rather lower
at high luminosities, but then remains (mysteriously) constant while the source
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Fig. 3.6 Two functions which can be used to estimate the total kinetic power associated with a
jet by measuring the core radio luminosity. The function K06 originates in [41] and was estimated
based on observations of X-ray binaries. The function MH12 is from [57] and was estimated based
on observation of AGN with associated radio cavities. For each function the range over which it was
evaluated is indicated by the solid line, and the extrapolation by the dashed line. It is remarkable
that the functions are broadly similar, across six to seven orders of magnitude in black hole mass

declines in X-ray luminosity by almost two orders of magnitude. It may equally
be that for some reason in the ‘radio quiet’ zone the relation between radio emission
and jet power has deviated from the simple relations given above.

In summary, we use simple relations, such as those outlined above, to estimate
the kinetic power associated with a given core1 radio luminosity. It is worth
remembering that a lot of hard work has gone into estimating/measuring the normal-
isations and slopes of samples which result in such an apparently straightforward
connection. Something realised early on was that the combination of the kinetic
power functions with the observed nonlinear X-ray:radio correlation was consistent
with (not proof of) a scenario in which the jet power was scaling linearly with the
accretion rate while the X-ray luminosity was scaling approximately as the square
of the accretion rate (e.g. [23]). This relation between accretion rate and X-ray
luminosity fits in turn, roughly, with the scalings proposed for radiatively inefficient
accretion flows (e.g. [52]).

1In general ‘core’ is taken as shorthand for unresolved central (at, or close to, the black hole) radio
emission, which typically has a flat spectrum. In a few X-ray binaries, and many active galactic
nuclei, the total radio luminosity is much larger when extended jets and lobes are included.
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3.3.2.2 Transient Jets Associated with Flares

Major ejection events are associated with bright flares observed in the radio light
curve (e.g. [25, 29, 34, 65, 66]). In some cases we can directly image the components
as they move away from the central accretor at relativistic bulk velocities (see
Fig. 3.7 for two examples from the powerful jet source GRS 1915C105).

When we can associate a given synchrotron luminosity with a given volume,
we can employ a method for estimating the power during the ejection event which
has its roots in calculations made over half a century ago by Burbidge [6] for the
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Fig. 3.7 Spatially resolved relativistic ejections from the black hole binary GRS 1915+105, a
powerful and repeating source of such events since it ‘switched on’ in 1992. This figure is adapted
from [67] (VLA observations, left panel) and [25] (MERLIN observations, right panel). This
system shows a remarkably rich phenomenology, and the interested reader is directed to the review
of [21] and subsequent works by e.g. [64]
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radio lobes of AGN. In essence the total energy (which is the sum of the integrated
energies in the electrons and magnetic field) can be minimised as a function of
the magnetic field. Since this minimum energy is associated with approximate
equipartition of internal energy between electrons and magnetic field, it is referred
to as the equipartition magnetic field.

[50] gives a clear explanation of the method, and the interested reader is directed
there. Repeating some of his useful formulae, a lower limit to the energy associated
with a finite volume of synchrotron emitting plasma can be obtained from a simple
estimate of the monochromatic luminosity at a given frequency which is associated
with that volume:

Emin � 8 � 106�4=7
�

V

cm3

�3=7 � �
Hz

�2=7 � L�
erg s�1 Hz�1

�4=7
erg (3.10)

where � D .1 C ˇ/ and ˇ D �p=�e represents the ratio of energy in protons to
that in electrons, and assuming p D 2 (where p is the electron distribution index,
N.E/dE / E�p). It is generally accepted that ˇ � 0 and therefore � � 1, but this
has not really been observationally proven.

In the more common case where we do not image the source but rather infer its
size from the rise time �t of an event (i.e. using V D .4=3/�.c�t/3 with a flux
density S� originating at an estimated distance d, the formula can be rewritten as

Emin � 3 � 1033�4=7
�
�t

s

�9=7 � �

GHz

�2=7 � S�
mJy

�4=7 � d

kpc

�8=7
erg (3.11)

The related mean power into the ejection event:

Pmin D Emin

�t
� 3 � 1033�4=7

�
�t

s

�2=7 � �

GHz

�2=7 � S�
mJy

�4=7 � d

kpc

�8=7
erg s�1

(3.12)

The corresponding �equipartition magnetic field can therefore be estimated as

Beq � 30�2=7
�

S�
mJy

�2=7 � d

kpc

�4=7 �
�t

s

��6=7 � �

GHz

�1=7
G (3.13)

and finally, the Lorentz factors of electrons (or positrons) emitting synchrotron
emission at a given frequency can be estimated by:

�e � 30
� �

GHz

�1=2 �B

G

��1=2
(3.14)

It is therefore rather straightforward to estimate a minimum energy and power
associated with a given ejection event. As a strong caveat, it should be noted that the
injection timescale could be much shorter than the rise time, which in many models
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for synchrotron emission is dominated by the evolution from large to small optical
depth in the expanding plasmon, which—in the event that all the other assumption
were correct—means that the above expression for the power is lower limit.

Figure 3.8 shows a relatively ‘clean’ radio flare event from the X-ray binary
jet source Cyg X-3. The observation is at 15 GHz, has a rise time of �3,500 s, an
amplitude of �200 mJy and Cyg X-3 lies at an estimated distance of �8 kpc. Using
the above approximations we find a minimum energy associated with the event of
Emin � 5�1040 erg, and a corresponding mean jet power during the event of � 1037

erg s�1, many orders of magnitude greater than the observed radio luminosity. The
corresponding equipartition field can be estimated as �0.5 Gauss, in which field
electrons radiating at 15 GHz must have Lorentz factors � � 150. These solutions
are illustrated in Fig. 3.9.

Fig. 3.8 Observation of a radio flare event from the jet source Cyg X-3 at 15 GHz. The rise time of
the event �0.04 d, allows an estimation of the size of the region associated with the event, and thus
the minimum energy. Observations from the Ryle Telescope (Guy Pooley, private communication)

Fig. 3.9 The energy in electrons and magnetic fields for the flare illustrated in Fig. 3.8, using the
equations outlined in the text. The minimum energy solution occurs around equipartition of energy
between electrons and fields, which in this case corresponds to a magnetic field of �0.5 G
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But we’re not finished yet. As already mentioned, it has been established
observationally that ejections associated with such flares have bulk Lorentz factors

 � 2, which means we have to both transform frequencies and timescales back to
the restframe of the ejecta, and consider the kinetic energy of bulk motion as well as
the internal energy in electrons and magnetic field. The kinetic energy is given by:

Ekin D .
 � 1/Eint (3.15)

i.e. for a bulk Lorentz factor 
 > 2 (by no means unreasonable—see below)
kinetic dominates over internal energy. Finally, we may also consider the additional
kinetic energy which is associated with the bulk motion of one cold proton for
every electron, adding yet more power. However, (1) it could be that the electrons
are neutralised by positrons, not protons, (2) the total mass of protons depends
strongly on the lowest energy to which the electron spectrum extends, which is
not well measured (and is somewhere that the new low-frequency radio arrays such
as LOFAR and MWA can contribute). A set of calculations, with and without bulk
relativistic motion and protons, is presented in [24], and summarised in Fig. 3.10
and Table 3.1.

For a more recent discussion providing an even fuller and probably more realistic
treatment, the interested reader is directed to [101, 102]. We further note that in

Fig. 3.10 Large, repeated synchrotron flares observed at mm (blue) and infrared (red) wavelengths
from the black hole binary GRS 1915+105. The figure shows a sequence of 16 quasi-periodic
flaring events observed at mm wavelengths, five of which are simultaneously detected in the
infrared band. Table 3.1 presents the minimum power calculations for these events under a number
of assumption. Both are from [24]
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Table 3.1 Calculation of radiative luminosity, equipartition magnetic field, total energy and jet
power & mass-flow rate for the IR/mm events presented in Fig. 3.10, given different physical
assumptions

Case f L(erg) Beq(G) Emin(erg) M (g) P (erg s�1) PMjet(g s�1)

eC:e�, 
 D 1 0.01 3� 1037 145 6� 1040 – 5� 1037 –

eC:e�, 
 D 1 0.1 3� 1037 75 2� 1041 – 2� 1038 –

eC:e�, 
 D 1 1.0 3� 1037 40 4� 1041 – 3� 1038 –

eC:e�, 
 D 5 1.0 4� 1039 115 3� 1043 – 3� 1040 –

pC:e�, 
 D 1 1.0 3� 1037 40 4� 1041 2� 1023 3� 1038 2� 1020

pC:e�, 
 D 5 1.0 5� 1039 115 1� 1046 3� 1024 8� 1042 4� 1021


 is the bulk motion Lorentz factor, f is the ‘filling factor’. In these calculations a distance of
11 kpc and Doppler factors for relativistic bulk motion which are the same as those reported in [25]
are all assumed. Mass flow rate PMjet and jet power P are based upon one ejection every 20 min.
Reproduced from [24]

reality, while these discrete major ejections are fascinating and powerful events in
their own right, their short duration relative to an entire outburst means that their
overall contribution is probably less than the integrated kinetic feedback from the
less spectacular (� steady) hard state jets (see Sect. 3.4).

3.3.2.3 No Jets

In the soft state we do not observe core radio jets at all, implying that the radio
luminosity is at least two orders of magnitude (the best limits to date, from [88])
below that observed at the same X-ray luminosity in the hard state.

Using Eq. (3.7), in which Ljet / L12=17radio we can estimate that this corresponds a
decrease in jet power of at least 10012=17 � 25. Of course, alternative explanations,
rather than a simple decrease in core jet power, may be responsible for the decrease
in the core radio flux but this remains, in our opinion, the most likely explanation
(see also discussion in [29]).

3.3.3 Winds

The existence of accretion disc winds in black hole X-ray binaries is revealed via
X-ray spectroscopy (e.g. [45]). They are identified by absorption features of mainly
Fe XXV and Fe XXVI blueshifted by �1,000 km s�1 (Fig. 3.11). Neilsen and Lee
[74] showed that in the powerful jet source GRS 1915+105, an incredibly rich source
of data on accretion and jet processes, the wind was strongly and rapidly coupled
to the X-ray state, being only present when the source was in (relatively) soft states
(Fig. 3.11). Ponti et al. [80] studied this wind—X-ray state coupling in a limited, but
significant sample of black hole binaries, finding ubiquitous wind-tracer absorption
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Fig. 3.11 Accretion wind—X-ray state coupling for the case of GRS 1915+105. Several absorp-
tion lines are present during the soft state (middle and bottom panels), including a strong,
blueshifted, Fe XXVI feature (red arrow). They are absent during the hard state (top panel), where
a broad Fe XXV emission line is seen in this case. Adapted from Neilsen and Lee 2009 (see also
[45])

lines during the soft states of systems viewed at high inclination, whilst they are not
observed in either the hard states of the same sources and lower inclination objects.
The latter implies an equatorial geometry for the wind (Fig. 3.12, see also [15]).

As detailed in [45], simple calculations suggest that the wind might play a
key role in the accretion process. From the equivalent width (W�) of the resonant
absorption lines of Fe XXV and Fe XXVI one can estimate the column density Nj of
every species using the relation:

W�

�
D 8:85 � 10�13�fijNj (3.16)

where fij is the oscillator strength of the corresponding transition and � the
wavelength (in centimetres). This relation assumes that the lines are not saturated,
but in the linear part of the curve growth. The obtained ionization fraction (NFe XXVI W
NFe XXV) can be compared with numerical simulations [39] in order to infer the
ionization parameter (�), which defines the state of an optically thin gas:

� D L=nr2 (3.17)

where L is the luminosity of the incident radiation, n is the gas density, and r
is the distance from the irradiating source [95]. In many cases, Fe XXV and Fe
XXVI absorption lines are the only iron features in the spectrum (i.e. Hydrogen-
like and Helium-like iron), which is a signature of a highly ionized plasma.
Indeed, ionization parameters of � � 104 are typically obtained—corresponding to
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Fig. 3.12 Sketch representing the thermal wind scenario for the soft and the hard state. In the latter
case, no wind would be expected if the outer disc is not sufficiently irradiated (heated). From [80]

temperatures above � 106 K—through the above method. From �, we can estimate
the mass carried away by the wind by simply using:

PMwind D 4�r2nmpvwind.
˝

4�
/ (3.18)

which can be re-written [using Eq. (3.17)] as:

PMwind D 4�mpvwind.
L

�
/.
˝

4�
/ (3.19)

being mp the proton mass, vwind the outflow velocity and˝ the solid angle subtended
by the wind (i.e. ˝

4�
is the wind covering factor). Typical values for the wind velocity

(vwind � 1;000 km s�1) and the covering factor (opening angle � 30ı; [80]) yield
PMwind � 1019 g s�1, comparable to, if not larger, than the central mass accretion rate

inferred from the observed luminosity. Therefore, the corresponding kinetic power
carried by the wind would be of the order of Lwind � 1035 erg s�1, significantly
lower than the luminosity radiated (see Sect. 3.4 below).

Wind outflows more than an order of magnitude larger than the contemporaneous
central mass accretion rates have been estimated in GRS 1915+105 (at luminosities
close to the Eddington limit) by Neilsen et al. [75]. At least in this case, the
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properties of the wind (e.g. velocity, column density) are found to be not constant
with time in response to just minor changes in the ionizing luminosity.

Soft-state luminosities are generally higher than that of the hard-state; thus,
ionization effects might play a role in explaining the observed phenomenology. To
test this scenario, simulations assuming power-law irradiation with a photon index
of 2 are typically used. They conclude that the observed change in luminosity is not
enough to explain the large variation in ionization state required to generate/quench
wind-tracer absorption lines if the same absorber material were always present (e.g.
[80]). However, a more accurate description of the (different) spectral energy dis-
tribution (SED) during the hard and the soft state is required to further confirm this
point. This has been done for one neutron star systems that seem to show a similar
wind-state coupling ([82]; see also Sect. 3.6.1) finding consistent results. Similarly,
not using self-consistent SEDs when determining the ionization parameter is also
one of the main uncertainties involved in the mass outflow rate calculation described
above.

The nature of the accretion wind in X-ray binaries is still unknown and more
than one mechanism (i.e. type of wind) might be at play. An appealing physical
interpretation is provided by the thermal wind scenario [2], which is sketched in
Fig. 3.11. Here, the outflow is produced as a consequence of the strong irradiation
suffered by the outer disc, which is heated, increasing the thermal pressure to the
point that a wind is driven off. Such a strong irradiation might be suppressed during
the hard state, when a geometrically thick inner disc and a jet are present. Indirect
evidence for the disc being less irradiated in the hard state have been recently
presented in [78] by studying the evolution of the ratio between Comptonized and
reflected emission across the different X-ray states.

Numerical 2D simulations performed by Luketic et al. [51] give support to
thermal winds carrying more mass than that being accreted (up to a factor of �7),
and having a strong angular dependence. However, in some cases other launching
mechanisms may play a role. These might be related to the accretion disc magnetic
field (i.e. magnetic winds; see e.g. [63]) and would imply that the amount of mass
carried by the wind could be even larger.

We will see below that, despite this large mass flow, kinetic feedback from the
wind is probably not very important in the bigger picture. However, the removal
of mass from the disc could potentially have a profound effect on the evolution of
outbursts: in the thermal wind scenario sketched above, the duration of the soft state
could be strongly limited by mass-loss in the wind, with only the mass within the
wind-launching radius at the time of the state transition able to ultimately make it to
the black hole.

3.4 Feedback Throughout an Outburst

Given the relations outlined in the previous section, we are now in a position to
take radio and X-ray measurements made throughout the outburst of a black hole
X-ray binary and use them to build up a picture of how feedback proceeds and
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Fig. 3.13 A smoothed fit to the X-ray lightcurve of the 2002–2003 outburst of the black hole X-ray
binary GX 339-4, roughly separated into hard and soft X-ray states based on the timing properties.
The curves are based on functions fit in [13], and correspond to the flux in the 0.1–200 keV energy
range

accumulates. In the following, we use an outburst of the black hole binary GX 339-
4, which took place in 2002, and was well monitored in the X-ray band. In order
to smoothly accumulate our functions through the outburst, we used the smoothed,
multiple Gaussian fit to the outburst also used in [13]. Figure 3.13 presents this light
curve, broadly separated into hard and soft states based upon the timing properties
as observed by RXTE (see [3]).

We take the methods discussed in the previous sections, and combine them with
the following assumptions:

1. In the soft state the radiative efficiency � is 0.1, which allows us to calculate the
accretion rate directly.

2. At the hard ! soft state transition, the radiative efficiency of the hard state is also
� D 0:1, ensuring no strong discontinuity in the light curve (but see below), but
either remains constant in the hard state (radiatively efficient hard state) or falls
linearly with accretion rate below that in the hard state, such that LX;hard / Pm
(radiatively inefficient hard state). This allows us to calculate the accretion rate
in the hard state.

3. We further assume that at the hard ! soft state transition, the core jet kinetic
power is 10 % of the radiative output, and falls linearly with the accretion rate, as
implied by the observations and the scalings discussed earlier. This is consistent
with applying Eq. (3.9) to the empirical radio:X-ray correlation for GX 339-4.

4. During the soft state, we assume that three times as much mass is being lost in
the accretion disc wind as is being accreted centrally.

5. Finally, we assume that following the state transition there is a period of major
relativistic ejections, which lasts 1 day and during which period the jet power is
twice the observed X-ray luminosity (or 200 times more powerful than the peak
hard state jet, which is at the upper end of power estimates).
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Fig. 3.14 The accretion rate estimated as outlined in the text, for the outburst of GX 339-4. The
accretion rate during the soft state is converted linearly from the X-ray flux, assuming radiatively
efficient (� D 0:1) accretion and no significant bolometric correction. During the hard state the
accretion rate is measured via two different approaches. The orange light curve corresponds to
radiatively efficient hard states, using the same prescription as for the soft state. The blue light
curve corresponds to radiatively inefficient accretion, where � D 0:1 at the hard ! soft state
transition, but then falls linearly with Pm thereafter (corresponding to LX / Pm2). This approach,
which is widely accepted and messes nicely with models for accretion and jet formation, results in
a strong discontinuity at the soft ! hard state transition, resulting from the fact that the radiative
efficiency should drop significantly, and yet no strong step down is observed in the X-ray light
curve. The resolution of this issue is not yet clear, but the two hard state curves probably encompass
the reasonable range of possibilities

In Fig. 3.14 we plot the mass accretion rate, as inferred from the X-ray light
curve, under the assumptions of both radiatively efficient and radiatively inefficient
accretion in the hard X-ray state. We see that, as mentioned earlier, in the case of a
simple switch from LX / Pm to LX / Pm2 at the soft ! transition, there is a strong
discontinuity in the inferred mass flow.

Figure 3.15 plots our estimates of the total power in radiation, jets and winds
throughout the outburst. The early and final stages of the outburst see the source in a
jet-dominated state [23], transitioning to radiation-dominated at or shortly before the
state change. A brief period of radio flaring during the state change may exceed the
radiation in power, but this is for a very short period and is probably inconsequential
in terms of the integrated feedback. The kinetic feedback from the wind, even with
a very large mass outflow rate, is orders of magnitude below the peak radiation and
jet powers, and is insignificant for the feedback of kinetic energy to the ambient
environment.

So what’s the integrated feedback? Figure 3.16 attempts to illustrate this by
comparing the total energy in hard and soft state radiation, and in kinetic feedback
in the jet. Before taking these results at face value, recall however, that:

• The kinetic power estimates, especially for the jet, are very uncertain (as you
should have learned from reading this review).
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Fig. 3.15 A comparison of the observed X-ray radiative luminosity with the kinetic powers
produced by the jet (hard state and state transition) and the wind (soft state). The kinetic power
of the wind is extremely small compared to both the radiation and jet kinetic power at their peaks;
however it may still play an important role in regulating the evolution of outbursts. Away from the
peak of the outburst, the source is predicted to enter ‘jet dominated’ states where the jet kinetic
power exceeds the radiative luminosity [23]

Fig. 3.16 Mass flow and feedback estimated for the outburst of GX 339-4 using the assumptions
stated in the text. The left panel indicates where the inflowing mass ended up; the majority was
lost in the accretion disc wind, and most of the central accretion occurred during the soft state.
Note that this figure is for the case of radiatively inefficient accretion in the hard state (c D 2) but
the results are not very different for efficient hard state accretion. The right panel summarises the
radiative and kinetic feedback integrated over the course of the outburst. Radiation, the dominant
fraction of which arises in the soft X-ray state, dominates over kinetic feedback from the jet. The
kinetic feedback from the wind is completely insignificant and is not plotted here
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• This integrated power does not include the jet-dominated feedback during
long periods (years) of quiescence (although it seems likely that feedback is
dominated by the outbursts, at least for this type of system and behaviour).

• It may well be that it is far easier, per erg of feedback, for the jets to
significantly affect their environments than the radiation (obviously the case if
the environment is entirely optically thin).

3.4.1 Where Does This Leave the Energy Balance?

Earlier in the review, we discussed how accurate measurement of the feedback
terms in Eq. (3.4) could potentially lead to estimates of the contributions from black
hole spin and advection. However (as forewarned), we see that in the analysis in
this section, we are forced to use the observed radiative luminosity to estimate the
accretion rate, thereby already relegating the spin and advection terms to (assumed)
minor significance. It is entirely possible (although theoretically unlikely), that the
Ladvected term is an order of magnitude larger than all the other terms in equation
[4], but we are simply unaware of this due to the (quasi-circular) assumptions made
in the above analysis. So the promise of measuring these important terms turns out
to have been a bit of an illusion, for now. How might we, in future, try to test these
terms?

The rate of mass accretion can, in principle, be estimated from the binary
parameters of a system (e.g. [13] and references therein). Those estimates seem to
support the assumption that, during the phases when most of the matter is accreted,
it is done so in a radiatively efficient way (i.e. Ladvected is a minor term). This
conclusion is supported, completely independently, by the ‘Soltan argument’ where
the cosmic X-ray background (a record of accretion onto AGN, peaking 1 � z � 2)
can be compared to the local space density of supermassive black holes (e.g. [19, 92]
and references therein).

What about the spin term? At present this also seems likely to be small
contributor to the overall energy budget of outbursts. However, its role in producing
powerful jets has long been advocated for AGN (see e.g. [91]) or even just assumed
(e.g. [33]). For X-ray binaries, in recent years ‘direct’ spin measurements have
emerged via two methods of X-ray spectroscopy (e.g. [54, 62, 86]) and also, most
recently, X-ray timing [69, 70]. It is not at all clear that the jet power estimates,
measured from the radio emission, correlate in any way with these reported spins.
This conclusion is strongest for the hard state sources, which appear to dominate
the overall kinetic feedback during an outburst ([28] and the analysis in the previous
section) but has been challenged in the case of the transient state transition flares
([73] the interested reader can follow the debate in [59, 89, 93] and citations thereof).
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3.5 Applicability to AGN

Does any of this have anything to do with supermassive black holes in AGN, the
feedback from which is thought to regulate the growth of galaxies and keep the gas
in the centres of clusters hot (e.g. [56])? There are some reasons to believe so but,
again, this is not proven.

3.5.1 Power and Accretion Across the Mass Spectrum

Following the discovery of the ‘universal’ radio:X-ray correlation ([10, 31]) in X-ray
binaries, [58] and [20] rapidly established a relation which also encompassed AGN
when a mass term was considered (and only core, not extended, radio emission
was used). This joint discovery of a ‘fundamental’ plane marked a milestone in
connecting feedback from black holes of all masses. In a sense this extended the
steady-jet, hard state correlation, from stellar mass to supermassive black holes.
Figure 3.17 presents the fundamental plane in the representation of Merloni et al.
with the addition of the detection of radio emission from the nearby stellar mass
black hole A0620-00 in quiescence [32], demonstrating the applicability of the
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Fig. 3.17 The ‘fundamental plane of black hole activity’ demonstrating a clear correlation
between (core) radio and X-ray luminosities across all black holes when a mass term is considered.
This representation is from [79], and considers only relatively low accretion rate sources (see
also [20, 42]), but the relation also holds, albeit with more scatter, when all types of AGN are
included [58]. All of the aforementioned papers present versions of this fundamental plane; the
representation here is shown to be further improved by making corrections for Doppler boosting
in some of the AGN (see [79] for all the details). The acronyms are as follows: GBH Galactic
black holes (BHXRB in this review), Sgr A* Sagittarius A* (galactic centre black hole), LLAGN
Low luminosity AGN, FR I Fanaroff-Riley I radio sources, SDSS HBL Sloan digital sky survey
high-energy cut off BL Lac objects, and � � �0:9. Note that for the X-ray binaries, both the
‘intrinsic’ and ‘global’ effects are seen, in the sense that individual sources are observed to move
up and down along the overall population (see Fig. 3.5), formed of multiple sources. To date, the
AGN correlation is ‘global’ only, formed by the population
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relation from the weakest to the most powerful black hole jets. As already noted,
the functions used to approximate the relation between core radio luminosity and
intrinsic jet power are also very similar, consistent with being identical.

3.5.2 The Disc-Jet Coupling

In [43] it was argued that, qualitatively, the relation between whether or not an AGN
was radio loud and its accretion rate and broadband spectrum was analogous to
that observed in stellar mass black holes. Most convincingly, it seems that AGN at
relatively low accretion rates (LLAGN) are relatively radio loud (see also e.g. [36]),
like the hard state of black hole X-ray binaries. This connects the states (at high
Eddington ratios) of stellar mass black holes to AGN and is also of great interest,
not least because it might well be enough on its own to explain why only �10 % of
luminous AGN are radio-loud (e.g. discussion in [91]), since this is approximately
the fraction of time spent in radio-loud states during an outburst (as we’ve seen
in Sect. 3.4, above). In addition to these population-based comparisons, individual
AGN have shown behaviour which appears to be directly comparable to the
accretion-outflow coupling in the black hole binary GRS 1915C105. Marscher et al.
[53] (see also [8, 9]) have reported spatially-resolved ejecta from the blazars 3C 120
and 3C 111 which appear to be associated with X-ray dips from the central AGN.
Recent work by Lohfink et al. [49] appears to support this interpretation. Figure 3.18
compare the dipping/flaring behaviour in 3C 111 with that observed in the binary
GRS 1915C105.

In the case of winds, there is a richer phenomenology and probably broader range
of underlying astrophysics, in the case of AGN. The high ionisation in the inner parts
of the accretion flow of an X-ray binary mean that fast UV-driven winds, manifest
as the broad line region (probably) in AGN, are not present in the stellar mass black
holes. There does appear to be a broad anti-correlation between the strongest jet
sources and the presence of winds in AGN, but it is too early to claim that this is
analogous to what we see in X-ray binaries.

Finally, independent of the connection to jets, there are multiple pieces of
evidence that black hole accretion can be scaled across the vast mass range from
stellar to the most supermassive, for example in the relation between black hole
mass, accretion rate and timing properties (e.g. [55]). It is undoubtedly the case that
the linked fields of BHXRB and AGN accretion can learn much from each other,
and we would encourage each community to (occasionally) review the status of the
other.
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Fig. 3.18 Qualitatively similar accretion:ejection coupling in an AGN and an X-ray binary. In the
left panel, the connection between superluminal ejections, radio and optical flaring, and X-ray dips
in the radio galaxy 3C 111 [9]. In the right panel, the connection between radio flares, which we
are confident correspond to ejection events, and X-ray dips, in the X-ray binary GRS 1915C105
[40]. In this source we also see that periods without strong X-ray dips do not produce radio flares,
and indeed there is a remarkable, complex and poorly-understood phenomenology of radio:X-ray
connection in this system (see e.g. review in [26])

3.6 Comparison to Neutron Stars: The Most Important
Control Sample

In the local Universe, neutron stars are more common than stellar mass black holes
(factor of �10), and so are neutron stars in X-ray binaries. They totally dominate
the population of persistent systems (i.e. those always active above �1 % LEdd), and
significantly contribute to the transients, the group where the vast majority of black
holes are found. It is therefore not surprising that, on a given day, nine of the ten
brightest sources in the X-ray sky are accreting neutron stars. These have yielded a
wealth of observations that can be equally used to study accretion processes in the
strong gravitational field regime (see [97] for a review).

However, there are, at least, two basic differences to bear in mind. (1) Neutron
star have a surface, where up to 50% of the accretion luminosity might be radiated
[94], and (2) an anchored magnetic field. The former has a clear impact in their
energy spectrum (and thus, colours) and have resulted in a variety of alternative
spectral models (e.g. [68, 98]). On the other hand, although low mass X-ray binaries
harbour old, weakly magnetized neutron stars, magnetic fields might still modify
the accretion geometry, as can occur in some compact binaries with white dwarf
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accretors. Indeed, X-ray pulsations are seen on several objects and differences in
magnetic field has been one of the classical explanations for the presence of two
different X-ray phenomenologies [35], which are now more certainly known to
be associated with different accretion rates/luminosities (e.g. [48]). Nevertheless,
anchored/central magnetic fields are likely to affect outflows properties at some
level.

All things considered, it is well established that neutron stars in low mass
X-ray binaries share X-ray spectral [17, 47] and timing properties [99] with their
analogous black hole systems. Recently, Muñoz-Darias et al. [72] have presented the
luminosity-variability plane—firstly introduced for black holes by Muñoz-Darias
et al. [71] as an equivalent to Fig. 3.3—as a common framework to study evolution
of the accretion flow in both populations. In particular, the hysteresis patterns
between hard and soft states, characteristic of black holes, seem to be equally
common in neutron star systems accreting below �30 % of LEdd. Brighter systems
stay in the soft state, and some of them—probably the brightest—also display soft
! hard and hard ! soft transitions, with X-ray and radio properties (see below)
similar to those observed in black holes (see Fig. 3.19).

Fig. 3.19 Sketch describing the qualitative evolution and location of faint and bright neutron star
(NS) systems (known as atoll and zeta sources, respectively), in the X-ray variability-luminosity
plane on top of what is typically observed in black hole (BH) transients. Variability is indicated as
fractional root mean square amplitude (rms) and luminosity is scaled by the Eddington luminosity.
Black holes and Neutron stars are observed to display hysteresis at sub-Eddington rates. The case
of GRS 1915C105, a persistent black hole that usually sits in the bright hard states is also shown. It
occasionally samples softer regions, overlapping with those typical for the bright NS during their
soft ! hard excursions. Both state transitions yield strong jet emission. In the upper panel we
indicate the outflow properties of black holes as a function of the state, a relation that seem to hold
as well for neutron stars. Adapted from [72], where we direct the reader for further details
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3.6.1 Outflows in Neutron Stars

Given the aforementioned similarities between accreting neutron stars and black
holes, and the discussed accretion-ejection connexion observed for the latter group,
one would expect to observe a similar outflow-X-ray state relation in the former.
Indeed, radio jets, both in the form of steady outflows and discrete ejections, have
been observed in these objects (see [60] for a global study). Steady jets are also
associated with the hard state, although for a given X-ray (accretion) luminosity
they are (probably, slightly) less powerful than those in black holes. On the other
hand, jet emission is only observed to quench during the bright phases of the soft
state (e.g. [61]), whilst radio emission seems to be present during faint soft states.
As noted in [72], this is in agreement with spectral studies [47] suggesting moderate
Comptonization levels during this phase, and with the amount of X-ray variability.

The brightest neutron stars (known as Z sources) can be active radio sources,
displaying transient jets very similar to those observed during the hard ! soft
transitions of black hole systems. In some cases, such as the jets from the neutron
star Cir X-1, these can be spectacular [27, 65], and we should not also forget that
a couple of other powerful jet sources, e.g. Cyg X-3 and SS433, might yet turn to
harbour neutron stars. The Z sources are (generally) persistent but variable sources,
and their behaviour resembles that of the (quasi-persistent2 but variable) black hole
GRS 1915+105. As can be seen in Fig. 3.19, the ejections seem to occur in a
similar region of the luminosity-variability plane. We note, however, that whereas
GRS 1915-105 typically sits in the bright hard state making soft excursions that
trigger the radio flaring, bright neutron stars are soft state systems making hard
excursions resulting in comparable radio behaviour. The reason why neutron stars
are not found in bright hard states is unknown.

As it occurs with the jet outflows, the presence of winds in accreting neutron
stars is also well established. They have been observed in several objects and share
similar properties to those in black holes, including alike absorbers and equatorial
geometries (see e.g. [16]). Recent studies [81, 81] have also shown that the X-ray
state–wind connection observed in black holes might also hold in these objects.
In particular, these works show that deep absorption lines, like those typically
associated with winds outflows, are present in the X-ray spectra of two systems
during the soft state. These features are not present during the hard state of the same
sources. To derive more global conclusions, the properties of these winds need to be
investigated with higher resolution instruments (e.g. to measure outflow velocities),
and from a larger sample of objects. However, we note that some of the systems
where winds have been already detected are bright neutron stars (Z sources), and
they spend most of their lives in the soft state. Beyond neutron stars, there are
hints that similar patterns of disc-jet coupling may occur in white dwarfs. Körding
et al. [44] reported the detection of a radio flare from the cataclysmic variable SS

2At the time of writing, this ‘transient’ has been active for 20 years.
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Cyg, which appeared to coincide with a high luminosity state transition, analogous
(possibly) to that observed in black holes and neutron stars. This cataclysmic
variable also displayed a hysteresis pattern that resembles those typically seen in
X-ray binaries.

3.7 Conclusions

The astrophysics of accretion and space time around stellar mass black holes is
extremely rich and probably our best test of classical general relativity. It is also
the subject of a completely different review to this one. Neither, although we are
concerned with feedback, have we considered how it works on the largest scales.
Rather, what we have attempted to do here is to show how one could—at least
in principle—use X-ray and radio observations to measure the total feedback,
via radiation, winds and jets, associated with accretion onto these objects. By
considering black holes as black box engines, and learning empirically what they
do, we can try to extrapolate to understand the past and future flow of heat and
energy in the universe.

In this review we have built up the background equations required to make
these calculations, and have tried them out on the outburst of a black hole
X-ray binary. We see that in terms of energy alone, our best estimates suggest that
radiation dominates over kinetic feedback. Within the realm of kinetic feedback,
the jet dominates the wind completely. It should be borne in mind, however, that
this was for a single outburst of a single source, and—as the reader will have
appreciated throughout the earlier sections—the estimator methods are fraught with
uncertainties. Intriguingly, although the wind is entirely overshadowed by the jet in
terms of integrated kinetic power, it may well dominate the mass flow and therefore
regulate the duration of the outburst (and hence the overall feedback). Improved
precision of the relations between radio flux and jet power, and between X-ray
luminosity and accretion rate, will allow us not only to understand how much power
we’re going to get from our black hole engine, but also to see how much that engine
is growing and being spun up or down. We remain convinced that everything we
learn about cycles of accretion and feedback in stellar mass black holes has some
relevance to supermassive black hole accretion, and look forward to a future of more
communication and cross-fertilisation between the fields.

Finally, we have shown that with every advance in our understanding of the
phenomenology of feedback in stellar mass black holes, neutron stars are keeping
step. They behave extremely similarly to black holes, but also slightly differently,
providing us with undoubtedly the best tests of what may or may not be unique to
black holes.
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Chapter 4
Observing Supermassive Black Holes Across
Cosmic Time: From Phenomenology to Physics

Andrea Merloni

Abstract In the last decade, a combination of high sensitivity and spatial resolution
observations and of coordinated multi-wavelength surveys has revolutionized our
view of extra-galactic black hole (BH) astrophysics. We now know that supermas-
sive black holes reside in the nuclei of almost every galaxy, grow over cosmological
times by accreting matter, interact and merge with each other, and in the process
liberate enormous amounts of energy that influence dramatically the evolution of
the surrounding gas and stars, providing a powerful self-regulatory mechanism
for galaxy formation. The different energetic phenomena associated to growing
black holes and Active Galactic Nuclei (AGN), their cosmological evolution and
the observational techniques used to unveil them, are the subject of this chapter. In
particular, I will focus my attention on the connection between the theory of high-
energy astrophysical processes giving rise to the observed emission in AGN, the
observable imprints they leave at different wavelengths, and the methods used to
uncover them in a statistically robust way. I will show how such a combined effort
of theorists and observers have led us to unveil most of the SMBH growth over
a large fraction of the age of the Universe, but that nagging uncertainties remain,
preventing us from fully understating the exact role of black holes in the complex
process of galaxy and large-scale structure formation, assembly and evolution.

4.1 Introduction

Astrophysical black holes in the local Universe have been inferred to reside in
two main classes of systems: X-ray binaries and active galactic nuclei (AGN).
Gathering estimates of their masses (either directly via dynamical measurements,
or indirectly, using phenomenological relations) allows their mass function to be
derived [82, 117, 138]. This appears clearly bi-modal, lacking any evidence of a
substantial black hole population at intermediate masses (i.e. between � 102 and
105Mˇ). While the height, width and exact mass scale of the low-mass peak can
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be modeled theoretically as the end-product of stellar (and binary) evolution, and
of the physical processes that make supernovae and gamma-ray bursts explode, the
supermassive black hole peak in this distribution is the outcome of the cosmological
growth of structures and of the evolution of mass inflow towards (and within) the
nuclear regions of galaxies, likely modulated by the mergers these nuclear black
holes will experience as a result of the hierarchical galaxy-galaxy coalescences.

The main question we are interested in here is the following: given the observed
population of supermassive black holes in galactic nuclei, can we constrain models
of their cosmological evolution to trace back this local population to their formation
mechanisms and the main observable phases of growth, as identified by the entire
AGN population?

As opposed to the case of galaxies, where the direct relationship between
the evolving mass functions of the various galaxy types and the star formation
distribution is not straightforward due to their never-ending morphological and
photometric transformation, the case of SMBH is much simpler. By their very
nature, black holes are simple (‘hairless’) objects, characterized only by two
physical properties (mass and spin), the evolution of which is regulated by analytical
formulae, to the first order functions of the rate of mass accretion onto them. Thus,
for any given “seed” black hole population, their full cosmological evolution can
be reconstructed, and its end-point directly compared to any local observation,
provided that their growth phases are fully sampled observationally.

This motivates ever more complete AGN searches (surveys). The level to which
the desired completeness can in practice be achieved depends on the level of our
understanding of the physical and electromagnetic processes that takes place around
accreting black holes. So, we cannot discuss the evolution of supermassive black
holes without an in-depth understanding of AGN surveys, and of their results; but at
the same time, we cannot understand properly these surveys if we do not understand
the physics behind the observed AGN phenomenology.

In this chapter I review the current state of affairs regarding the study of
the evolution of the black hole population in the nuclei of galaxies. I will first
(Sect. 4.2) describe the observational techniques used to survey the sky in search
of signs of black holes activity, and the progresses made on constraining the
phenomenological appearance of AGN (Sect. 4.2.2). Then, in Sect. 4.3, I will move
from the phenomenological to the physical description of the processes thought to
be responsible for the observed Spectral Energy Distribution (SED) in luminous
AGN, focusing in particular on the properties of AGN accretion discs (Sect. 4.3.1),
coronae (Sect. 4.3.2), and the IR-emitting dusty obscurer (the so-called “torus”,
Sect. 4.3.3). In Sect. 4.4 I will present a concise overview of the current state of
the art of AGN luminosity function studies at various wavelength, encapsulating
our knowledge about the overall population cosmic evolution. The final section
(Sect. 4.5) is devoted to a general discussion of the so-called Soltan argument, i.e.
the method by which we use the evolutionary study of the AGN population to infer
additional global physical properties of the process of accretion onto and energy
release by supermassive black holes. In particular, I will show how robust limits on
the average radiative and kinetic efficiency of such processes can be derived.
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A few remarks about this review are in place. First of all, I do not discuss in
detail here the physics of relativistic jets in AGN, which carry a negligible fraction
of the bolometric output of the accretion process, but can still carry large fractions
of the energy released by the accretion process in kinetic form. This is of course
a complex and rich subject in itself, and I refer the reader to the recent reviews
by Ghisellini [50], Perlman [120], and Heinz [65]. Nonetheless, I will include a
discussion about radio luminosity function evolution, which is functional to the aim
of compiling a census of the kinetic energy output of SMBH over cosmic time. I also
do not discuss in any detail the impact growing black holes might have on the larger-
scale systems they are embedded in. The generic topic of AGN feedback has been
covered by many recent reviews see e.g. [23, 41, 102, 107], and would definitely
deserve more space than is allowed here. Finally, part of the material presented here
has been published, in different form, in two recent reviews [54, 107], and in Merloni
et al. [104].

4.2 Finding Supermassive Black Holes: Surveys, Biases,
Demographics

Accretion onto supermassive black holes at the center of galaxies manifests itself in
a wide variety of different phenomena, collectively termed Active Galactic Nuclei.
Their luminosity can reach values orders of magnitude larger than the collective
radiative output of all stars in a galaxy, as in the case of powerful Quasars (QSO),
reaching the Eddington luminosity for black holes of a few billion solar masses,1

which can be visible at the highest redshift explored (z > 7). On the other hand,
massive black holes in galactic nuclei can be exceedingly faint, like in the case of
Sgr A* in the nucleus of the Milky Way, which radiates at less than a billionth of the
Eddington luminosity of the 6:4 � 106 Mˇ BH harboured there. Such a wide range
in both black hole masses and accretion rates of SMBH results in a wide, complex,
observational phenomenology.

The observational characterization of the various accretion components is chal-
lenging, because of the uniquely complex multi-scale nature of the problem. Such
a complexity greatly affects our ability to extract reliable information on the nature
of the accretion processes in AGN and does often introduce severe observational
biases, that need to be accounted for when trying to recover the underlying physics
from observations at various wavelengths, either of individual objects or of large
samples.

Simple order-of-magnitudes evaluations will suffice here. Like any accreting
black holes, an AGN releases most of its energy (radiative or kinetic) on the scale of

1The Eddington luminosity is defined as LEdd D 4�GMBHmpc=�T ' 1:3 � 1038.MBH=Mˇ/ ergs
s�1, where G is the Newton constant, mp is the proton mass, c the speed of light and �T the
Thomson scattering cross section.
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a few Schwarzschild radii (� 10�5 pc for a 108 Mˇ BH). However, the mass inflow
rate (accretion rate) is determined by the galaxy ISM properties at the location where
the gravitational influence of the central black hole starts dominating the dynamics
of the intergalactic gas (the so-called Bondi radius), some 105 times further out. The
broad permitted atomic emission lines that are so prominent in the optical spectra
of un-obscured QSOs are produced at �0.1–1 pc (Broad Line Region, BLR), while,
on the parsec scale, and outside the sublimation radius, a dusty, large-scaleheight,
possibly clumpy, medium obscures the view of the inner engine [37] crucially
determining the observational properties of the AGN [114]; on the same scale,
powerful star formation might be triggered by the self-gravitational instability of the
inflowing gas [56]. Finally, AGN-generated outflows (either in the form of winds or
relativistic jets) are observed on galactic scales and well above (from a few to a few
hundreds kpc, some � 108 � 1010 times rg!), often carrying substantial amounts of
energy that could dramatically alter the (thermo-) dynamical state of the inter-stellar
and inter-galactic medium.

When facing the daunting task of assessing the cosmological evolution of AGN,
i.e. observing and measuring the signs of accretion onto nuclear SMBH within
distant galaxies, it is almost impossible to achieve the desired high spatial resolution
throughout the electromagnetic spectrum, and one often resorts to less direct means
of separating nuclear from galactic light. There is, however, no simple prescription
for efficiently performing such a disentanglement: the very existence of scaling
relations between black holes and their host galaxies and the fact that, depending on
the specific physical condition of the nuclear region of a galaxy at different stages
of its evolution, the amount of matter captured within the Bondi radius can vary
enormously, imply that growing black holes will always display a large range of
“contrast” with the host galaxy light.

4.2.1 On the AGN/Galaxy Contrast in Survey Data

More specifically, let us consider an AGN with optical B-band luminosity given by
LB;AGN D �LEddfB, where we have introduced the Eddington ratio (� � Lbol=LEdd),
and a bolometric correction fB � LB;AGN=Lbol � 0:1 [124]. Assuming a mean black
hole to host galaxy mass ratio of A0 D 0:002, the contrast between nuclear AGN
continuum and host galaxy blue light is given by:

LB;AGN

LB;host
D 39�

�
fB
0:1

��
A0
0:002

�
.M�=LB/host

3.Mˇ=Lˇ/
(4.1)

Thus, for typical mass-to-light ratios, the AGN will become increasingly diluted
by the host stellar light in the rest-frame UV-optical bands at Eddington ratios �
smaller than a few per cent.
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Similar considerations can be applied to the IR bands, as follows. For simplicity,
we use here the Rieke et al. [125] relation between monochromatic (24�m) IR
luminosity and Star Formation Rate (SFR, expressed in units of solar masses per
year): L24;SFR � 5 � 1042 � SFR, and the Whitaker et al. [160] analytic expression
for the “main sequence” of star forming galaxies: log SFR D ˛.z/  .log M� �
10:5/Cˇ.z/, with ˛.z/ D 0:7� 0:13z and ˇ.z/ D 0:38C 1:14z � 0:19z2. Then, the
rest-frame 24�m “contrast” between AGN and galaxy-wide star formation can be
written as:

LIR;AGN

LIR;SF
� 160�10�ˇ.z/

�
f24
0:1

��
A0
0:002

��
M�

1010:5Mˇ

�1�˛.z/
; (4.2)

where we have defined f24 the AGN bolometric correction at 24�m, and A0 is
here assumed, for simplicity, to be redshift independent. Thus, for a “typical”
108Mˇ black holes in a 1010:5Mˇ main-sequence star-forming host, the IR emission
produced by the global star formation within the galaxy dominates over the AGN
emission for � < 0:13, or � < 0:015, at z � 1 or z � 0, respectively.

When considering star-formation induced hard (2–10 keV) X-ray emission,
instead, we obtain

LX;AGN

LX;SF
� 105�10�ˇ.z/

�
fX
0:03

��
A0
0:002

��
M�

1010:5Mˇ

�1�˛.z/
; (4.3)

where fX the AGN bolometric correction from the 2–10 keV band, and we have used
the expression LX;SF ' 2:5 � 1039 � SFR [53, 122]: for the same level of SF in a
main sequence AGN host, the nuclear AGN emission dominates the hard X-ray flux
as long as the accretion rate exceeds � > 2 � 10�4, or � > 2 � 10�5, at z � 1 or
z � 0, respectively.

This has obvious implications for our understanding of selection biases in AGN
surveys. It is clear then that the most luminous optical QSOs (i.e. AGN shining at
bolometric luminosity larger than a few times 1045 erg/s), represent just the simplest
case, as their light out-shines the emission from the host galaxy, resulting in point-
like emission with peculiar colors. Less luminous, Seyfert-like, AGN will have a
global SED with a non-negligible contribution from the stellar light of host. As
a result, unbiased AGN samples extending to lower-luminosities, will inevitably
have optical-NIR colors spanning a large range of intermediate possibilities between
purely accretion-dominated and purely galaxy-dominated. Optical (and, to a large
extent, NIR) surveys will easily pick up AGN at high Eddington ratio, and thus,
potentially, all members of a relatively homogeneous class of accretors, while deep
X-ray and radio surveys can circumvent such biases, by detecting and identifying
accretion-induced emission in objects of much lower Eddington ratio.
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4.2.2 Phenomenology of AGN Spectral Energy Distributions

The process of identifying AGN embedded within distant (or nearby) galaxies
that we have discussed above is intimately connected with the meticulous work
needed to piece together their Spectral Energy Distribution (SED) across the
electromagnetic spectrum.

For the practical reasons discussed in the previous section, up until recent years
accurate SED of accreting SMBH were constructed mainly from bright un-obscured
(type-1) QSO samples. Setting the standard for almost 20 years, the work of Elvis
et al. [40], based on a relatively small number (47) of UV/X-ray selected quasars,
has been used extensively as a template for the search and characterization of nearby
and distant AGN. Elvis et al. [40] SED is dominated by AGN accreting at the
highest Eddington ratio, and, as shown in Fig. 4.1, this spectral energy distribution
is characterized by a relative flatness across many decades in frequency, with
superimposed two prominent broad peaks: one in the UV part of the spectrum (the
so-called Big Blue Bump; BBB), one in the Near-IR, separated from an inflection
point at about 1�m.

Subsequent investigations based on large, optically selected QSO samples (most
importantly the SDSS one, Richards et al. [124]) have substantially confirmed the
picture emerged from the Elvis et al. [40] study. Apart form a difference in the mean
X-ray-to-optical ratio (optically selected samples tend to be more optically bright
than X-ray selected ones, as expected), the SDSS quasars have indeed a median

Fig. 4.1 Mean Spectral Energy distribution of UV/X-ray selected quasar from Elvis et al. [40].
Solid black line is for radio-quiet QSOs, dot-dashed for radio-loud
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SED similar to those shown in Fig. 4.1 for AGN accreting at L=LEdd > 0:1, despite
the difference in redshift and sample size.

Large multi-wavelength galaxy survey and extensive follow-up campaigns of
medium-wide and deep X-ray surveys (such as the Chandra Deep Field, Giacconi
et al. [52]; the COSMOS field, Hasinger et al. [64]; or the X-Bootes field, Hickox
et al. [68]) have allowed to extend AGN SED systematic studies to a wide variety
of Eddington ratios and AGN/galaxy relative contributions. Figure 4.2 shows the
results of Lusso [91] (see also Lusso et al [92] and Elvis et al. [38]), who analysed
an X-ray selected sample of AGN in the COSMOS field, the largest fully identified
and redshift complete AGN sample to date. When restricted to a “pure” QSO
sample (i.e. one where objects are pre-selected on the basis of a minimal estimated
galaxy contamination of < 10%), the SED of the COSMOS X-ray selected AGN is
reminiscent of the Elvis et al. [40] and Richard et al. [124] ones, albeit with a less
pronounced inflection point at 1�m. The mean (and median) SED for the whole
sample, however, apart from having a lower average luminosity, is also characterized
by much less pronounced UV and NIR peaks. This is indeed expected whenever
stellar light from the host galaxy is mixed in with the nuclear AGN emission.

Figure 4.3 [13, 61] further illustrates this point. It displays the slope of the rest-
frame SED in the optical (˛OPT, between 0.3 and 1�m) and NIR (˛NIR between 1
and 3�m) bands, i.e. long- and short-wards of the � 1�m inflection point. Pure
QSOs, i.e., objects in which the overall SED is dominated by the nuclear (AGN)

Fig. 4.2 Left Panel: The median (red points) and the mean (blue points) SEDs for the total
spectroscopic type-1 COSMOS AGN sample. The mean SED for the “Pure” sample (estimated
galaxy contamination < 10%) is represented with black points. The error bars (gray area)
represent the dispersion of the total spectroscopic sample around the mean SED. The average SEDs
are compared with the mean SED of Elvis et al. [40] (blue line), the mean SEDs of Richards et
al. [124] using all the SDSS quasar sample (green line) and the near-IR dim SDSS quasar sample
(orange line). Right Panel: The median SEDs computed splitting the “Pure” sample in bins of
increasing X-ray luminosity at 4 keV. From Lusso [91]
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Fig. 4.3 Observed rest-frame SED slopes in the optical (˛OPT, between 0.3 and 1�m) and NIR
(˛NIR between 1 and 3�m) for all (�1650) X-ray selected AGN in the COSMOS survey. Blue filled
circles denote spectroscopically confirmed type 1 (broad lined) AGN, blue empty circles denote
candidate type 1 AGN from the photo-z sample. Red filled circles are spectroscopically confirmed
type 2 (narrow lined) AGN, empty red circles are candidate type 2 AGN from the photo-z sample.
The empty blue star marks the colors of a pure intrinsic type 1 quasar SED (from Richards et
al. [124]), while black stars are the loci of synthetic spectral templates of galaxies, with increasing
levels of star formation form the left to the right. Nuclear obscuration moves every pure type 1
AGN along the direction of the orange arrow. From Bongiorno et al. [13]

emission would lie close to the empty blue star in the lower right corner (positive
optical slope and negative NIR slope). The location of the X-ray selected AGN in
Fig. 4.3 clearly shows instead that, in order to describe the bulk of the population,
one needs to consider both the effects of obscuration (moving each pure QSO in the
direction of the orange arrow) and an increasing contribution from galactic stellar
light (moving the objects towards the black stars in the upper part of the diagram).
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4.3 The Spectral Components of AGN: Accretion Discs,
Coronae and Dusty Tori

In the previous section, we have presented a phenomenological view of AGN
Spectral Energy Distributions, as can be gained by multi-wavelength AGN/QSO
surveys, without paying too much attention to the physical origin of the main
spectral components themselves. In this section, instead, we analyse the main
spectral component of AGN SED, to highlight the connections between AGN
phenomenology and physical models of accretion flows.

4.3.1 AGN Accretion Discs

The gravitational energy of matter dissipated in the accretion flow around a black
hole is primarily converted to photons of UV and soft X-ray wavelengths. The lower
limit on the characteristic temperature of the emerging radiation can be estimated
assuming the most radiatively efficient configuration: an optically thick accretion
flow. Taking into account that the size of the emitting region is r � 10rg (rg D
GMBH=c2 is the gravitational radius) and assuming a black body emission spectrum
one obtains:

kTbb D
�

Lbol

�SB�r2

�1=4
� 14

�
Lbol

1044

�1=4 �MBH

108

��1=2
eV (4.4)

Proper treatment of the angular momentum transport within the accretion flow
allows a full analytical solution of optically thick (but geometrically thin) discs, first
discovered by Shakura & Sunyaev [136]. It is a major success of their theory the
fact that, for typical AGN masses and luminosities (and thus accretion rates), the
expected spectrum of the accretion disc should peak in the optical-UV bands, as
observed. Indeed, a primary goal of AGN astrophysics in the last decades has been
to model accurately the observed shape of the BBB in terms of standard accretion
disc models, and variations thereof.

The task is complicated by at least three main factors. First of all, standard
accretion disc theory, as formulated by Shakura & Sunyaev [136], needs to be
supplemented by a description of the disc vertical structure and, in particular, of
its atmosphere, in order to accurately predict spectra. This, in turn, depends on the
exact nature of viscosity and on the micro-physics of turbulence dissipation within
the disc. As in the case of XRB, models for geometrically thin and optically thick
AGN accretion discs has been calculated to increasing levels of details, from the
simple local blackbody approximation to stellar atmosphere-like models where the
vertical structure and the local spectrum are calculated accounting for the major
radiative transfer processes (e.g. the TLUSTY code of Hubeny et al. [71]).



110 A. Merloni

Fig. 4.4 Total-light spectra of nearby QSOs, shown as bold traces in the optical and as squares
in the near-infrared, and normalized at 1�m in the rest frame. Polarized-light spectra (arbitrarily
shifted by a factor of 3 with respect to the total light, for clarity), are shown as light points in
the optical and as bold points in the near-infrared, also separately normalized at 1�m, by fitting
a power law to the near-infrared polarized-light spectra. For both total-light and polarized-light
data, horizontal bar lengths indicate bandwidth. The total-light spectra begin to increase in �F�
at wavelengths around, or slightly greater than, 1�m. In contrast, the polarized-light spectra
all consistently and systematically decrease towards long wavelengths, showing a blue shape of
approximately power-law form. From Kishimoto et al. [79]

A second complicating effect, a purely observational one, is the fact that the
intrinsic disc continuum emission is often buried underneath a plethora of permitted
atomic emission lines, many of which broadened significantly by gas motions in the
vicinity of the central black hole (see, e.g. the solid lines of Fig. 4.4). Interestingly,
the metallicities implied by the relative strength of broad emission lines do not show
any significant redshift evolution (see Fig. 4.5): they are solar or super-solar, even in
the highest redshift QSOs known see e.g. [60], in contrast with the strong evolution
of the metallicity in star forming galaxies.
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Fig. 4.5 Stacked spectra of quasars in different redshift bins. Note that the relative intensity of the
metal lines (and in particular the (SiIV+OIV])=CIV ratio) remains constant over the wide redshift
interval 2.5< z <6.4, indicating that the metallicity in the observed quasars does not evolve with
redshift. From [76]

In particularly favorable geometrical observing conditions, by looking at optical
spectra in polarised light, the “contaminating” broad emission lines are removed,
and the true continuum of the accretion disc is revealed. This shows a broad dip
possibly corresponding to the Balmer edge absorption expected from an accretion
disc atmosphere [78]. Extending the polarised continuum into the near-IR reveals
the classic long wavelength �1=3 spectrum expected from simple accretion disc
models see [79], and Fig. 4.4.

Finally, a third complicating factor is that the real physical condition in the
inner few hundreds of Schwarzschild radii of an AGN might be more complex
than postulated in the standard accretion disc model: for example, density inho-
mogeneities resulting in cold, thick clouds which reprocess the intrinsic continuum
have been considered at various stages as responsible for a number of observed
mismatches between the simplest theory and the observations see e.g. [58, 87, 109],
and references therein.

Essentially all of the above mentioned problems are particularly severe in the UV
part of the spectrum, where observations are most challenging. Shang et al. [137]
compared broad-band UV-optical accretion disc spectra from observed quasars with
accretion disc models. They compiled quasi-simultaneous QSO spectra in the rest-
frame energy range 900–9000 Å and fitted their continuum emission with broken
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power-law models, and then compared the behavior of the sample to those of
non-LTE thin-disk models covering a range in black hole mass, Eddington ratio,
disk inclination, and other parameters. The results are far from conclusive: on
the one hand, the observed slopes are in general consistent with the expectations
of sophisticated accretion disc models. On the other hand, the spectral UV break
appears to always be around 1100 Å, and does not scale with the black hole mass in
the way expected.

Jin et al. [75] have looked at detailed continuum fits to the joint optical-UV-
X-ray SED of 51 nearby AGN with known black hole masses. Figure 4.6 shows
the variation of the mean SED as a function of various parameters, such as X-ray
spectral index 
2�10, black hole mass, bolometric luminosity and Eddington ratio.
Clearly, global trends in the basic disc properties (such as its peak temperature)
are observed, in correlation with the main parameter of the accretion flow. From a
Principal Component analysis, Jin et al. [75] found that the first two eigenvectors
contain � 80% of all correlations in the matrix, with the first one strongly
correlating with black hole mass, and the second one with the bolometric luminosity,
while both correlate with the Eddington ratio. Interestingly, this turns out to be
consistent with the results of a PCA analysis of the emission line-dominated QSO
spectra [15].

Having a well-sampled spectral energy distribution for the AGN emission
produced by a standard, Shakura & Sunyaev [136] accretion disc around a SMBH
of known mass, could in principle lead to useful constraints on the overall radiative
efficiency of the accretion process, and therefore on the nature of the inner boundary
condition of the accretion disc and on the black hole spin itself.

Davis [31] have made a first systematic attempt to estimate the radiative effi-
ciencies of accretion discs in a sample of QSOs. In individual AGN, thin accretion
disk model spectral fits can be used to infer the total rate of mass accretion onto the
black hole PM, if its mass MBH is known. In fact, by measuring the continuum disk
luminosity in the optical band (i.e. in the Rayleigh-Jeans part of the optically thick
multi-color disc spectrum), the accretion rate estimates are relatively insensitive to
the actual model of the disc atmosphere. The principle is analogous to that employed
in black hole X-ray binaries in order to constrain BH spin from the disc continuum
measurements (see [101]), but in a typical AGN, the above-mentioned observational
intricacies need to be dealt with, together with the fact that the BBB is much worse
sampled than in a stellar mass black hole. On the other hand, the uncertainty in
the distance to the object, that plagues the studies of galactic black holes is not an
issue for QSOs with measured spectroscopic redshift. Very massive black holes at
high redshift have the peak of the disc emission well in the optical bands. Provided
one is able to properly correct for the increasing optical depth of the Inter-galactic
medium, it could be possible to use simple photometric SED modelling to constrain
properties of the disc and the central black hole (see e.g. Ghisellini et al. [51]). At
the opposite end of the mass spectrum, small mass black holes accreting at very high
rate in the local universe are expected to have such a high disc temperature that the
tail of the optically thick thermal emission should appear as “soft excess” in the soft
X-ray energy bands. Done et al. [35] have indeed argued that some Narrow-Line
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Fig. 4.6 The AGN mean SEDs based on different values of 4 parameters from SED model
fitting of AGN (from top to bottom: 2–10 keV X-ray spectral index, black hole mass, bolometric
luminosity and Eddington ratio. For each parameter, the 51 sources are sorted according to the
parameter value, and re-normalized SED to the mean luminosity at 2500 Å of. The three panels
(A, B, C) in each row show the mean SEDs for the subsets classified by the parameter shown in the
panel title. In each panel the solid curve is the mean SED, while the shaded coloured region is the
1� deviation. The peak position of the SED is marked by the vertical solid purple line. The average
values of some other parameters in that subset are also shown in the panel. From Jin et al. [75]
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Seyfert 1 galaxies can indeed be modelled with a very high temperature accretion
disc, thus gaining information on the disc inner boundary, and, indirectly, on the BH
spin.

4.3.2 AGN Coronae and X-ray Spectral Properties

The upper end of the relevant temperature range reached by accretion flows
onto black holes is achieved in the limit of optically thin emission from a hot
plasma, possibly analogous to the solar corona, hence the name of accretion disc
“coronae” [47]. The virial temperature of particles near a black hole, kTvir D
GMBHm=r / mc2=.r=rg/, does not depend on the black hole mass, but only on
the mass of the particle m, being Tvir;e � 25.r=10rg/

�1 keV for electrons and
Tvir;p � 46.r=10rg/

�1 MeV for protons. As the electrons are the main radiators that
determine the emerging spectral energy distribution, while the protons (and ions)
are the main energy reservoir, the outcoming radiation temperature for optically
thin flows depends sensitively on the detailed micro-physical mechanisms through
which ions and electrons exchange their energy in the hot plasma.

Indeed, the values of the electron temperature typically derived from the spectral
fits to the hard spectral component in accreting black holes, kTe � 50 � 150 keV,
are comfortably within the range defined by the two virial temperatures, but, unlike
in the case of optically thick accretion solutions, it has proved impossible to derive
it from the first principles of accretion theory, and various models have been put
forward to explain it [12, 111].

In most cases, the observed hard X-ray spectral component from hot optically
thin plasma is believe to be produced by unsaturated Comptonization of low
frequency seed photons from the accretion disc itself (when present), with char-
acteristic temperature Tbb. Such a spectrum has a nearly power law shape in the
energy range from � 3kTbb to � kTe [145]. For the parameters typical for black
holes in AGN this corresponds to the energy range from � a few tens of eV to
� 50 � 100 keV. The photon index 
 of the Comptonized spectrum depends in a
rather complicated way on the parameters of the Comptonizing media, primarily
on the electron temperature and the Thompson optical depth [145]. In fact, the
emerging power law slope depends more directly on the Comptonization parameter
y, which is set by the energy balance in the optically thin medium: critical is the
ratio of the energy deposition rate into hot electrons and the energy flux brought
into the Comptonization region by soft seed photons [33, 59, 144].

Broadly speaking, significant part of, if not the entire diversity of the spectral
behavior observed in accreting black holes of stellar mass can be explained by the
changes in the proportions in which the gravitational energy of the accreting matter
is dissipated in the optically thick and optically thin parts of the accretion flow. This
is less so for supermassive black holes in AGN, where emission sites other than
the accretion disk and hot corona may play significant role (e.g.broad and narrow
emission line regions or dusty obscuring structures on pc scales, see Sects. 4.3.1
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and 4.3.3 above and below). The particular mechanism driving these changes is
however unknown. Despite significant progress in MHD simulations of the accretion
disk achieved in recent years [74, 116, 133] there is no accepted global model of
accretion onto a compact object able to fully explain all the different spectral energy
distributions observed, nor the transitions among them.

Generically, the X-ray spectra of luminous AGN are all dominated by a power-
law in the 2–10 keV energy range, with a relative narrow distribution of slopes:
h
 i D 1:8˙0:2 [110, 143, 164], consistent with the expectations of Comptonization
models discussed above, and suggesting a quite robust mechanism is in place to
guarantee a almost universal balance between heating and cooling in the hot plasma.
Of course, X-ray spectra of AGN are more complex than simple power-laws. A clear
reflection component from cold material [49, 123] is observed in a number of nearby
AGN, and further required by Cosmic X-ray Background (CXRB) synthesis models
[55]; and emission and absorption features are also seen in good quality spectra. The
most prominent and common of those is a narrow iron K˛ emission line. Such a line,
produced by cold, distant material appears to be dependent on luminosity, with more
luminous sources having smaller equivalent widths the so-called Iwasawa-Taniguchi
effect [73].

The physical origin of the tight coupling between cold and hot phases, however,
remains elusive. In fact, the main open questions regarding the origin of the X-ray
emitting coronae and the reflection component in AGN (and in XRB) are intimately
connected with those left open by the classical theory of relativistic accretion discs.
The main ones concern a) the physical nature of the viscous stresses and their
scaling with local quantities within the disc (pressure, density); b) the exact vertical
structure of the disc and the height where most of the dissipation takes place and c)
the nature of the inner boundary condition.

As usual, observational hints on the right answers to those questions come more
easily from well sampled observations of transient black holes in XRB, where the
dynamical evolution of the coupled disc-corona system can be followed in great
detail, proving at least a phenomenological framework for how optically thin and
optically thick plasma share accretion energy at different accretion rates [44].

In the case of AGN, because of the complexities of galactic nuclei discussed
above, and because the discs and coronae of AGN emit in distinct parts of
the electromagnetic spectrum, it is much more difficult to clearly distinguish
between different spectral states in terms of a simple power ratios between the
two main spectral components. Nevertheless, as a very general diagnostic, the
“X-ray loudness”, usually characterized by the ˛ox parameter, i.e. the slope of the
spectrum between 2500 Å D 5 eV and 2 keV: ˛ox D 0:3838 log.F2 keV=F2500/ can
be used to characterize the fraction of bolometric light carried away by high-energy
X-ray photons. Recent studies of large samples of both X-ray and optical selected
AGN have clearly demonstrated that ˛ox is itself a function of UV luminosity, with
less luminous objects being more X-ray bright see e.g. [75, 92, 143], and the left
panel of Fig. 4.7. In very general terms, this might point towards a connection
between accretion disc physics and the mechanism(s) of coronae generation in AGN
[103, 159].
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Fig. 4.7 Left: The optical-to-X-ray spectral slope ˛ox as a function of luminosity density at
2500 Å. From Lusso et al. [92]. Right: X-ray photon index (
 ) vs. redshift z. Blue circles represent
radio quiet, non-BAL (Broad Absorption Line) quasars, green stars represent radio loud quasars,
and red triangles represent BAL quasars. The bottom plot shows the weighted mean 
 values for
bins of width �z D 1. No clear sign of evolution in the average X-ray spectral slope of AGN is
detected over more than 90 % of the age of the universe. From Young et al. [164]

Such generic properties of AGN X-ray SED do not appear to change significantly
with redshift: even for the most distant objects known where reliable spectral
analysis of AGN can be performed, no clear sign of evolution in either ˛ox (at fixed
luminosity) or the X-ray spectral slope 
 has been detected (see the right panel of
Fig. 4.7).

4.3.3 Infrared Dust Emission from AGN: The Link
with the Nuclear Structure at the Bondi Radius

The observational appearance of an AGN is not only determined by the intrinsic
emission properties of its accretion disc and corona, but also by the nature, amount,
dynamical and kinematic state of any intervening material along the line of sight.
Intrinsic obscuration does indeed play a fundamental role for our understanding of
the overall properties of AGN. As we have seen in the previous section, the intrinsic
shape of the X-ray continuum can be characterized by a power-law in the 2–10 keV
energy range, with a relative narrow distribution of slopes: h
 i D 1:8˙ 0:2. Thus,
the hard slope of the Cosmic X-ray Background (CXRB) spectrum (well described
by a power-law with photon index 
CXRB ' 1:4 at E < 10 keV), and the prominent
peak observed at about 30 keV are best accounted for by assuming that the majority
of active galactic nuclei are in fact obscured [26, 135], see also Fig. 4.15 below.

In the traditional ‘unification by orientation’ schemes, the diversity of AGN
observational classes is explained on the basis of the line-of-sight orientation with
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respect to the axis of rotational symmetry of the system [3, 4, 154]. In particular,
obscured and un-obscured AGN are postulated to be intrinsically the same objects,
seen from different angles with respect to a dusty, large-scale, possibly clumpy,
parsec-scale medium, which obscures the view of the inner engine [37, 114].
According to the simplest interpretations of such unification schemes, there should
not be any dependence of the obscured AGN fraction with intrinsic luminosity
and/or redshift.

However, the results on the statistical properties of obscured AGN from these
studies are at odds with the simple ‘unification-by-orientation’ scheme. In fact,
evidence has been mounting over the years that the fraction of absorbed AGN,
defined in different and often independent ways, appears to be lower at higher
nuclear luminosities [6, 14, 19, 21, 22, 63, 88, 139, 142, 153]. Such an evidence,
however, is not uncontroversial. As recently summarized by Lawrence & Elvis [89],
and references therein, the luminosity dependence of the obscured AGN fraction, so
clearly detected, especially in X-ray selected samples, is less significant in other
AGN samples, such as those selected on the basis of their extended, low frequency
radio luminosity [161] or in mid-IR colors [84]. The reasons for these discrepancies
are still unclear, with Mayo & Lawrence [100] arguing for a systematic bias in the
X-ray selection due to an incorrect treatment of complex, partially-covered AGN.

Evidence for a redshift evolution of the obscured AGN fraction is even more
controversial. Large samples of X-ray selected objects have been used to corroborate
claims of positive evolution of the fraction of obscured AGN with increasing redshift
[63, 83, 149], as well as counter-claims of no significant evolution [55, 146, 153].
More focused investigation on specific AGN sub-samples, such as z > 3 X-ray
selected QSOs [45, 155], rest-frame hard X-ray selected AGN [72], or Compton
Thick AGN candidates [18] in the CDFS have also suggested an increase of the
incidence of nuclear obscuration towards high redshift. Of critical importance is
the ability of disentangling luminosity and redshift effects in (collections of) flux-
limited samples and the often complicated selection effects at high redshift, both in
terms of source detection and identification/follow-up.

In a complementary approach to these “demographic” studies (in which the
incidence of obscuration and the covering fraction of the obscuring medium is
gauged statistically on the basis of large populations), SED-based investigations
look at the detailed spectral energy distribution of AGN, and at the IR-to-bolometric
flux ratio in particular, to infer the covering factor of the obscuring medium in
each individual source [93, 94, 128, 131, 147]. These studies also found general
trends of decreasing covering factors with increasing nuclear (X-ray or bolometric)
luminosity, and little evidence of any redshift evolution [93]. Still, the results of
these SED-based investigations are not always in quantitative agreement with the
demographic ones. This is probably due to the combined effects of the uncertain
physical properties (optical depth, geometry and topology) of the obscuring medium
[57, 93], as well as the unaccounted for biases in the observed distribution of
covering factors for AGN of any given redshift and luminosity [128]. To account
for this, different physical models for the obscuring torus have been proposed,
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all including some form of radiative coupling between the central AGN and the
obscuring medium e.g. [86, 94, 113].

Irrespective of any specific model, it is clear that a detailed physical assessment
of the interplay between AGN fuelling, star formation and obscuration on the
physical scales of the obscuring medium is crucial to our understanding of the
mutual influence of stellar and black hole mass growth in galactic nuclei [10].
Conceptually, we can identify three distinct spatial regions in the nucleus of a galaxy
on the basis of the physical properties of the AGN absorber. The outermost one is
the gravitational sphere of influence of the supermassive black hole (SMBH) itself,
also called Bondi Radius RB D 2GMBH=�

2 ' 10MBH;8 �;300 pc, where MBH;8

is the black hole mass in units of 108Mˇ, and �;300 can be either the velocity
dispersion of stars for a purely collisionless nuclear environment, or the sound
speed of the gas just outside RB, measured in units of 300 km/s. To simplify,
one can consider any absorbing gas on scales larger than the SMBH sphere of
influence to be “galactic”, in the sense that its properties are governed by star-
formation and dynamical processes operating at the galactic scale. The fact that
gas in the host galaxy can obscure AGN is not only predictable, but also clearly
observed, either in individual objects (e.g. nucleus-obscuring dust lanes, Matt [99]),
or in larger samples showing a lack of optically selected AGN in edge-on galaxies
[85, 95]. Indeed, if evolutionary scenarios are to supersede the standard unification
by orientation scheme and obscured AGN truly represent a distinct phase in the
evolution of a galaxy, then we expect a relationship between the AGN obscuration
distribution and the larger scale physical properties of their host galaxies.

Within the gravitational sphere of influence of a SMBH, the most critical
scale is the radius within which dust sublimates under the effect of the AGN
irradiation. A general treatment of dust sublimation was presented in Barvainis [7],
Fritz et al. [46], and subsequently applied to sophisticated clumpy torus models
[113] or to interferometric observations of galactic nuclei in the near-IR [81].
For typical dust composition, the dust sublimation radius is expected to scale
as Rd ' 0:4 .Lbol;45=10

45/1=2.Tsub=1500K/�2:6 pc [113], as indeed confirmed by
interferometry observations of sizable samples of both obscured and un-obscured
AGN in the nearby Universe [80, 151]. Within this radius only atomic gas can
survive, and reverberation mapping measurements do suggest that indeed the Broad
emission Line Region (BLR) is located immediately inside Rd [77, 115].

The parsec scale region between Rd and RB is the traditional location of the
obscuring torus of the classical unified model. On the other hand, matter within
Rd may be dust free, but could still cause substantial obscuration of the inner tens of
Schwarzschild radii of the accretion discs, where the bulk of the X-ray emission is
produced [25, 29]. Indeed, a number of X-ray observations of AGN have revealed in
recent years the evidence for gas absorption within the sublimation radius. Variable
X-ray absorbers on short timescales are quite common [39, 96, 126, 127], and the
variability timescales clearly suggests that these absorbing structures lie within (or
are part of) the BLR itself.

In [104] we examined the luminosity and redshift dependence of the fraction
of AGN classified as obscured, both optically and from the X-ray spectra. The
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Fig. 4.8 Left Panel: The fraction of optically obscured AGN is plotted versus the X-ray luminosity
for different redshift bins (purple circles: 0:3 � z < 0:8; blue upwards triangles: 0:8 � z < 1:1;
cyan downwards triangles: 1:1 � z < 1:5; green squares: 1:5 � z < 2:1 and red stars: 2:1 � z <
3:5). The vertical dashed lines mark the luminosities above which the samples are complete in each
redshift bin (of corresponding color). Empty symbols are from incomplete bins. The dashed line is
the best fit to the entire data set across the whole redshift range. Right Panel: Redshift evolution of
the fraction of Obscured AGN in different luminosity bins (only those for which we are complete
have been shown). The dotted, dashed, and dot-dashed lines show the best fit evolution in the three
luminosity interval, respectively

sample, X-ray selected in the XMM-COSMOS field, was selected on the basis of
the estimated rest frame 2–10 keV flux, in order to avoid as much as possible biases
due to the z � NH degeneracy for obscured AGN.

The left hand panel of Fig. 4.8 shows such a fraction as a function of intrinsic
X-ray luminosity in five different redshift bins. The decrease of the obscured AGN
fraction with luminosity is strong, and confirms previous studies on the XMM-
COSMOS AGN [19]. The dashed line, instead, shows the best fit relations to the
optically obscured AGN fraction obtained combining all redshift bins.

One of the most important conclusions of the work of Merloni et al. [104]
was that for about 30 % of all X-ray selected AGN the optical- and X-ray-based
classifications into obscured and un-obscured sources disagree. For this reason, the
left panel of Fig. 4.9, which shows the fraction of (X-ray classified) obscured AGN
as a function of intrinsic 2–10 keV X-ray luminosity (LX) is significantly different
from that of Fig. 4.8. In particular, at low luminosity about one third of the AGN
have un-obscured X-ray spectra but no broad emission lines or prominent blue
accretion disc continuum in their optical spectra, while, on the other hand, about
30 % of the most luminous QSOs have obscured X-ray spectra despite showing
clear broad emission line in the optical spectra.

We plot in the right panels of Figs. 4.8 and 4.9 the fraction of obscured
AGN as a function of redshift, for three separate luminosity intervals and for
the optical and X-ray classifications, respectively. Only bins where the sample
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Fig. 4.9 Left Panel: The fraction of X-ray obscured AGN is plotted versus the X-ray luminosity for
different redshift bins (purple circles: 0:3 � z < 0:8; blue upwards triangles: 0:8 � z < 1:1; cyan
downwards triangles: 1:1 � z < 1:5; green squares: 1:5 � z < 2:1 and red stars: 2:1 � z < 3:5).
The vertical dashed lines mark the luminosities above which the samples are complete in each
redshift bin (of corresponding color). Empty symbols are from incomplete bins. The dashed line is
here plotted as a reference, and represent the best fit to the absorbed AGN fraction vs. luminosity
relation for optically obscured AGN, from Fig. 4.8. Right Panel: Redshift evolution of the fraction
of Obscured AGN in different luminosity bins (only those for which we are complete have been
shown). The dotted, dashed, and dot-dashed lines show the best fit evolution in the three luminosity
interval, respectively

is complete are shown. For optically classified AGN, we do not see any clear
redshift evolution, apart from the highest luminosity objects (i.e. genuine QSOs
in the XMM-COSMOS sample, with LX between 1044:3 and 1044:7 erg/s). To better
quantify this, we have fitted separately the evolution of the obscured fraction in the
three luminosity bins with the function: Fobs D B � .1C z/ı.

The best fit relations are shown as thin lines in the right panels of Figs. 4.8
and 4.9. For the optical classification, as anticipated, we measure a significant
evolution (ıOPT > 0) only for the most luminous objects, with ıOPT D 1:27˙ 0:62.
For the X-ray classification, we observe a significant evolution with redshift both
at the lowest and highest luminosities, where the fraction of X-ray obscured
AGN increases with z, consistent with previous findings by numerous authors
[45, 63, 83, 148, 155]. A more robust assessment of the redshift evolution of the
obscured AGN fraction, however, would require a more extensive coverage of the
L � z plane than that afforded by the flux-limited XMM-COSMOS sample.
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4.3.4 The SED of Low Luminosity AGN

Irrespective of where and when was most of the mass in SMBH accreted (and we
will see in Sect. 4.5 that this happened most likely at high accretion rates), the
steepness of the AGN luminosity function tells us that most of the time in the
life of a nuclear black hole is spent in a later, low accretion rate, low luminosity
regime: the ubiquity of SMBH in the nuclei of nearby galaxies implies that, in the
local Universe, AGN of low and very low luminosity vastly outnumber their bright
and active counterparts. However, at lower accretion rates the precise determination
of AGN SED is severely hampered by the contamination from stellar light (as
we discussed in more detail in Sect. 4.2), and very high resolution imaging is
needed to identify the accretion-related emission. This is of course possible only
for nearby galaxies, and only a limited number of reliable SED of LLAGN are
currently known[69]. An important step towards the classification of AGN in terms
of their specific modes of accretion was taken by Merloni et al. [108] and Falcke
et al. [43], whereby a “fundamental plane” relation between mass, X-ray and radio
core luminosity of active black holes was discovered and characterized in terms
of accretion flows. In particular, the observed scaling between radio luminosity,
X-ray luminosity and BH mass implies that the output of low-luminosity AGN is
dominated by kinetic energy rather than by radiation [9, 62, 105, 130]. This is in
agreement with the average SED of LLAGN [69, 112] displaying a clear lack of
thermal (BBB) emission associated to an optically thick accretion disc, strongly
suggestive of a “truncated disc” scenario and of a radiative inefficient inner accretion
flow (see Fig. 4.10).

Fig. 4.10 Energy spectra of a compilation of AGN at different Eddington-scaled luminosities
(from [69])
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4.4 AGN Luminosity Functions and Their Evolution

The Luminosity Functions (LF) �.L/ describe the space density of sources of
different luminosity L, so that dN D �.L/dL is the number of sources per unit
volume with luminosity in the range L C dL. In this section we review the current
observational state of affairs in the study of AGN luminosity functions, in various
parts of the electromagnetic spectrum (from radio to X-rays). Well constrained
single-band luminosity functions, together with a good understanding of the AGN
SED (and its evolution), can then be used to infer the “bolometric” LF, i.e. the full
inventory of the radiative energy release onto accreting black holes.

4.4.1 The Evolution of Radio AGN

The observed number counts distribution of radio sources see e.g. [107] has been
used for many years as a prime tool to infer properties of the cosmological evolution
of radio AGN, mainly because of the sensitivity of radio telescope to distant
quasar, and of the difficulty in getting reliable counterpart identification and redshift
estimate for large number of radio sources.

At bright fluxes, counts rise more steeply than the Euclidean slope S�3=2. This
was already discovered by the first radio surveys at meter wavelengths [129],
lending strong support for evolutionary cosmological models, as opposed to theories
of a steady state universe.

At fluxes fainter than about a Jansky2 (or � 10�14 ergs s�1 cm�2 at 1 GHz) the
counts increase less steeply than S�3=2, being dominated by sources at high redshift,
thus probing a substantial volume of the observable universe.

At flux densities above a mJy the population of radio sources is largely composed
by AGN. For these sources, the observed radio emission includes the classical
extended jet and double lobe radio sources as well as compact radio components
more directly associated with the energy generation and collimation near the central
engine.

The deepest radio surveys, however, (see e.g. Padovani et al. [118] and references
therein), probing well into the sub-mJy regime, clearly show a further steepening
of the counts. The nature of this change is not completely understood yet, but in
general it is attributed to the emergence of a new class of radio sources, most likely
that of star-forming galaxies and/or radio quiet AGN (see Fig. 4.11). Unambiguous
solutions of the population constituents at those faint flux levels requires not only
identification of the (optical/IR) counterparts of such faint radio sources, but also
a robust understanding of the physical mechanisms responsible for the observed
emission both at radio and optical/IR wavelengths.

2A Jansky (named after Karl Jansky, who first discovered the existence of radio waves from space)
is a flux measure, corresponding to 10�23 ergs cm�2 Hz�1.
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Fig. 4.11 Euclidean
normalized 1.4 GHz CDFS
radio source counts: total
counts (black triangles), Star
Forming Galaxies (filled
green circles), all AGNs (red
squares), and radio- quiet
AGNs (open blue circles).
Error bars correspond to 1�
errors. Model calculations
refer to SFG (green
dotted-dashed lines),
displayed with a 1� range on
the evolutionary parameters,
all AGNs (red dashed line),
radio-quiet AGNs (blue
dotted line), and the sum of
the first two (black solid line).
From Padovani et al. [118]
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Thus, the complex shape of the observed number counts provides clues about
the evolution of radio AGN, as well as on their physical nature, even before
undertaking the daunting task of identifying substantial fractions of the observed
sources, determining their distances, and translating the observed density of sources
in the redshift-luminosity plane into a (evolving) luminosity function. Pioneering
work from Longair [90] already demonstrated that, in order to reproduce the
narrowness of the observed ‘bump’ in the normalized counts around 1 Jy, only the
most luminous sources could evolve strongly with redshift. This was probably the
first direct hint of the intimate nature of the differential evolution AGN undergo over
cosmological times.

Indeed, many early investigations of high redshift radio luminosity functions
(see, e.g., Danese et al. [30]) demonstrated that no simple LF evolution models
could explain the observed evolution of radio sources, with more powerful sources
(often of FRII morphology) displaying a far more dramatic rise in their number
densities with increasing redshift (see also Willott et al. [162]).

Trying to assess the nature of radio AGN evolution across larger redshift
ranges requires a careful evaluation of radio spectral properties of AGN. Steeper
synchrotron spectra are produced in the extended lobes of radio jets, while flat
spectra are usually associated with compact cores. For objects at distances such
that no radio morphological information is available, the combination of observing
frequency, K-corrections, intrinsic source variability and orientation of the jet with
respect to the line of sight may all contribute to severe biases in the determination
of the co-moving number densities of sources, especially at high redshift [158].
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In a very extensive and equally influential work Dunlop & Peacock [36] studied
the evolution of the luminosity functions of steep and flat spectrum sources
separately. They showed that the overall redshift evolution of the two classes of
sources were similar, with steep spectrum sources outnumbering flat ones by almost
a factor of ten. Uncertainties remained regarding the possibility of a high-redshift
decline of radio AGN number densities. The issue is still under discussion, with
the most clear evidence for such a decline observed for flat-spectrum radio QSO at
z > 3 [158], consistent with the most recent findings of optical and X-ray surveys.

Under the simplifying assumption that the overall radio AGN population can
be sub-divided into steep and flat spectrum sources, characterized by a power-
law synchrotron spectrum S� / ��˛, with slope ˛flat D 0:1 and ˛steep D 0:8,
respectively, a redshift dependent luminosity function can be derived for the two
populations separately, by fitting simple models to a very large and comprehensive
set of data on multi-frequency source counts and redshift distributions obtained
by radio surveys at � < 5GHz [98]. The comoving number densities in bins of
increasing radio power (at 1.4 GHz) from the resulting best fit luminosity function
models are shown in the left panel of Fig. 4.12.

Fig. 4.12 The radio view of AGN downsizing. Left: Best fit number density evolution of radio
sources of different power, taken from the models of Massardi et al. [98], for steep and flat spectrum
sources in the left and right panels, respectively. Right: Evolution of the comoving 20 cm integrated
luminosity density for VLA-COSMOS AGN (orange curve) galaxies for z < 1:3. Also shown is
the evolution of the high-luminosity radio AGN, adopted from (Willott et al. [162], hatched region;
the thick and dashed lines correspond to the mean, maximum and minimum results, respectively).
The evolution for the total AGN population, obtained by co-adding the VLA-COSMOS and high
luminosity AGN energy densities, is shown as the red-shaded curve (adopted from Smolčić [140])
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Radio AGN, both with steep and flat spectrum, show the distinctive feature
of a differential density evolution, with the most powerful objects evolving more
strongly towards higher redshift, a phenomenological trend that, in the current
cosmologist jargon, is called “downsizing”.

Recent radio observational campaigns of large multi-wavelength sky surveys
have also corroborated this view, by providing a much more detailed picture of low
luminosity radio AGN. For example, the work of Smolčić [140] on the COSMOS
field showed that radio galaxies with L1:4 GHz < few � 1025 WHz�1 evolve up to
z ' 1, but much more mildly than their more luminous counterparts, as shown in
the right panel Fig. 4.12.

In the local Universe, the combination of the SDSS optical spectroscopic survey
with the wide-area, moderately deep VLA surveys (NVSS, Condon et al. [27] and
FIRST, Becker et al. [8]), have been used by Best & Heckman [9] to gain a
powerful insight on the radio AGN population. They found not only that the radio
AGN population can be clearly distinct into two sub-groups on the basis of their
optical emission line properties (high- and low-excitations radio galaxies, HERG
and LERG, respectively), but that dichotomy corresponds to a more profound
difference in the accretion mode onto their respective black holes: HERG typically
have accretion rates between one per cent and 10 per cent of their Eddington rate,
and appear to be in a radiative efficient mode of accretion, while most LERG accrete
with an Eddington ratio of less than one per cent. In addition, the two populations
show differential cosmic evolution at fixed radio luminosity: HERG evolve strongly
at all radio luminosities, while LERG show weak or no evolution, consistent with
the general trends observed in the more distant Universe, and described above.

4.4.2 Optical and Infrared Studies of QSOs

Finding efficient ways to select QSO in large optical surveys, trying to minimize
contamination from stars, white dwarfs and brown dwarfs has been a primary goal
of optical astronomers since the realization that QSO were extragalactic objects
often lying at cosmological distances [124, 132].

Optical surveys remain an extremely powerful tool to uncover the evolution of
un-obscured QSOs up to the highest redshift (z � 6). In terms of sheer numbers,
the known population of SMBH is dominated by such optically selected AGN (e.g.
more that 3�105 QSOs have been identified in the first three generations of the Sloan
Digital Sky Survey, Pâris [119]), essentially due to the yet unsurpassed capability
of ground-based optical telescopes to perform wide-field, deep surveys of the extra-
galactic sky.

As for the general evolution of the optically selected QSO luminosity function,
it has been known for a long time that luminous QSOs were much more common at
high redshift (z � 2). Nevertheless, it is only with the aid of the aforementioned
large and deep surveys covering a wide enough area of the distance-luminosity
plane that it was possible to put sensible constraints on the character of the observed
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Fig. 4.13 Left: The combined 2SLAQ and SDSS optical QSO luminosity function plotted as a
function of redshift for different absolute g band magnitude intervals (the brightest at the bottom
of the plot and the faintest at the top). The measured LF is compared to the best fit PLE model
(Pure Luminosity Evolution, dotted lines), smooth LDDE model (Luminosity Dependent Density
Evolution, long dashed lines) and LADE (Luminosity And Density Evolution) model (short dashed
lines). From [28]; Right: J-band luminosity function of mid-IR-selected AGN for several redshift
bins. The crosses show points that were not used in the fits. The best-fit LADE, PLE, and pure PDE
models are shown by the solid, dashed, and dotted line, respectively, although only the LADE
model is an acceptable fit to the data. The shaded area shows the 2� confidence region for the
LADE fit. For reference, the solid light gray line shows the best-fit LADE model to a sample from
a combined IR/X-ray selection. From [5]

evolution. The most recent attempts [28] have shown unambiguously that optically
selected AGN do not evolve according to a simple pure luminosity evolution, but
instead more luminous objects peaked in their number densities at redshifts higher
than lower luminosity objects, as shown in the left panel of Fig. 4.13.

As I discussed in Sect. 4.3.3, according to the AGN unification paradigm
obscuration comes from optically thick dust blocking the central engine along some
lines of sight. The temperature in this structure, which can range up to 1000 K (the
typical dust sublimation temperature), and the roughly isotropic emission toward
longer wavelengths should make both obscured and un-obscured AGNs very bright
in the mid- to far-infrared bands. This spectral shift of absorbed light to the IR has
allowed sensitive mid-infrared observatories (IRAS, ISO, Spitzer) to deliver large
numbers of AGN see, e.g. [149].

Deep surveys with extensive multi-wavelength coverage have been used to track
the evolution of active galaxies in the mid-infrared see, e.g. [5, 32]. Strengthening
similar conclusions discussed above from other wavelengths, IR-selected AGN do
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not appear to evolve following either a ‘pure luminosity evolution’ or ‘pure density
evolution’ parametrizations, but require significant differences in the evolution of
bright and faint sources, with the number density of the former declining more
steeply with decreasing redshift than that of the latter (see the right panel in
Fig. 4.13).

The problem with IR studies of AGN evolution, however, lies neither in the
efficiency with which growing supermassive black holes can be found, nor with the
completeness of the AGN selection, which is clearly high and (almost) independent
of nuclear obscuration, but rather in the very high level of contamination, as we
discussed in Sect. 4.2. IR counts are, in fact, dominated by star forming galaxies
at all fluxes: unlike the case of the CXRB, AGN contribute only a small fraction
(up to 2–10 %) of the cosmic IR background radiation [149], and similar fractions
are estimated for the contribution of AGN at the “knee” of the total IR luminosity
function at all redshifts. This fact, and the lack of clear spectral signatures in the
nuclear, AGN-powered emission in this band, implies that secure identification of
AGN in any IR-selected catalog often necessitates additional information from other
wavelengths, usually radio, X-rays, or optical spectroscopy.

In the best cases (such as the COSMOS and CDFS fields), accurate SED
modelling of IR selected galaxies can be used to identify reliably AGN (at least
those accreting at a substantial rate). Delvecchio et al. [32] have indeed been able
to use a Herschel selected sample to derive the AGN luminosity function across a
wide redshift range (0 < z < 3). Figure 4.14 shows the total integrated black hole
accretion rate density derived from this work.

Fig. 4.14 Black Hole Accretion Rate Density estimate from the Herschel selected AGN luminos-
ity function, as a function of redshift (black circles). The red shaded area shows the 1� uncertainty
region. Previous estimates from different selection wavelengths (from Merloni & Heinz [106], and
Hopkins et al. [70]) are reported for comparison. From Delvecchio et al. [32]
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4.4.3 X-ray Surveys

Due to the relative weakness of X-ray emission from stars and stellar remnants
(magnetically active stars, cataclysmic variables and, more importantly, X-ray
binaries are the main stellar X-ray sources), the X-ray sky is almost completely
dominated by the evolving SMBH population, at least down to the faintest fluxes
probed by current X-ray focusing telescopes (see Eq. (4.3)).

In particular, the Cosmic X-ray Background (CXRB) radiation can be considered
as the ultimate inventory of the energy released by the process of accretion onto
black holes throughout the history of the Universe. Detailed modelling of the CXRB
over the years, so-called “synthesis models” of the CXRB [55, 150], evolved in
parallel with our deeper understanding of the physical properties of accreting black
holes, and of their cosmological evolution. Today, deep extragalactic surveys with
X-ray focusing telescopes, mainly Chandra and XMM-Newton, have resolved about
�80–90 % of the CXRB. These observations have shown unambiguously that a
similar fraction of the CXRB emission is produced by the emission of supermassive
black holes in AGN at cosmological distances (see Fig. 4.15).

The goal of reaching a complete census of evolving AGN, and thus of the
accretion power released by SMBH in the history of the universe has therefore
been intertwined with that of fully resolving the CXRB into individual sources.
Accurate determinations of the CXRB intensity and spectral shape, coupled with
the resolution of this radiation into individual sources, allow very sensitive tests of
how the AGN luminosity and obscuration evolve with redshift.

The most recent CXRB synthesis models have progressively reduced the uncer-
tainties in the absorbing column density distribution. When combined with the
observed X-ray luminosity functions, they provide an almost complete census of the
Compton-thin AGN (i.e., those obscured by columns NH < �

�1
T ' 1:5�1024 cm�2,

where �T is the Thomson cross section). This class of objects dominates the counts
in the lower energy X-ray energy band, where almost the entire CXRB radiation has
been resolved into individual sources [163].

Synthesis models of the X-ray background, like the one shown in Fig. 4.15
ascribe a substantial fraction of this unresolved emission to heavily obscured
(Compton-thick) AGN. However, because of their faintness even at hard X-ray
energies, their redshift and luminosity distribution is very hard to determine, and
even their absolute contribution to the overall CXRB sensitively depends on the
quite uncertain normalization of the unresolved emission at hard X-ray energies.
Overall the CXRB is relatively insensitive to the precise Compton-thick AGN
fraction [1]. The quest for the physical characterization of this “missing” AGN
population, most likely dominated by Compton thick AGN, represents one of the
last current frontiers of the study of AGN evolution at X-ray wavelengths.
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Fig. 4.15 Contribution of supermassive black holes in AGN and stellar mass black holes in
X-ray binaries to the spectral intensity of the Cosmic X-ray background. Points with error bars
show the observed CXRB brightness (as compiled from [55]). The blue solid line is the overall
contribution of AGN, which is the sum of the contributions from: (a) un-obscured AGN (i.e. those
with absorbing column density NH < 1022 cm2, dashed blue line); (b) obscured, Compton-Thin
AGN (with 1022 < NH < 1024 cm2, dot-dashed blue line) and (c) heavily obscured, Compton-
Thick sources (NH > 1024 cm2, dotted blue line). The computation is based on the [55] synthesis
model. The red solid line is the integrated contribution of high-mass X-ray binaries in star-forming
galaxies, computed as described in Dijkstra et al. [34]. It is further subdivided into: (1) Ultra-
Luminous X-ray sources (Ultra-luminous X-ray sources, ULX, dot-dashed red line); (2) black hole
High-mass X-ray binaries (dashed red line) and (3) accreting neutron stars and pulsars (dotted red
line). Because of the shallow slope of the X-ray luminosity function of compact X-ray sources in
star-forming galaxies, X-ray emission of the latter is dominated by the most luminous sources—
stellar mass black holes accreting matter from the massive companion star. Adapted from Gilfanov
& Merloni [54]

However, Compton Thick AGN still leaves characteristics imprints in the shape
of AGN X-ray spectra, so that the deepest X-ray surveys, along with extensive
multi-wavelength coverage of X-ray survey regions, have allowed the identification
significant samples of Compton-thick AGN at moderate to high redshifts [16, 17,
20, 48].

Recently, Buchner et al. [21] developed a novel non-parametric method for
determining the space density of AGN as a function of accretion luminosity, redshift
and hydrogen column density, building on the X-ray spectral analysis of Buchner
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Fig. 4.16 Total X-ray luminosity function in the 2–10 keV spectral band. Each panel corresponds
to a different redshift interval. Dashed and solid black lines represent the results obtained with two
different generic choices of priors for the non-parametric description of the data; the difference
in the reconstructions between the two is therefore an indication of whether the data or the priors
dominate the result. The hatched regions indicate a measure of the uncertainty, using the 10–90 %
quartiles of the posterior samples from both priors together. The orange thin solid line shows
the reconstruction by Ueda et al. [152]. The dotted red curve is their local (z D 0:1) luminosity
function kept constant across all panels for comparison. From Buchner et al. [21]

et al. [20]. Applying their Bayesian spectral analysis technique of a realistic,
physically motivated model to a multi-layered survey determine the luminosity and
level of obscuration in a large sample of X-ray selected AGN across a wide range
of redshifts.

Figure 4.16 shows the total (i.e. including Compton-thick objects) X-ray lumi-
nosity function (XLF) in the 2–10 keV spectral band, together with a comparison
with a recent comprehensive study of the XLF by Ueda et al. [152]. The overall
shape of the luminosity function is a double power-law with a break or bend at a
characteristic luminosity, L, the value of which increases with redshift. As found
in previous studies, the space density shows a rapid evolution up to around z � 1

at all luminosities, being most prominent at high luminosities due to the positive
evolution of L.

Figure 4.17 shows the derived luminosity density (in erg/s/Mpc�3) for X-ray
emitting AGN, split into un-obscured ones, Compton-thin and -thick sources.
Buchner et al. [21] found that about 75 % of the AGN space density, averaged
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Fig. 4.17 Top panel: Evolution of the X-ray luminosity density of AGN with LX > 1043:2 erg/s,
for various column densities. The luminosity output of AGN experiences a rise and fall in density in
the z D1–3.5 range (total as top gray shaded region). The strongest contribution to the luminosity
density is due to obscured, Compton-thin (blue shaded region) and Compton-thick AGN (green
shaded region), which contribute in equal parts to the luminosity. The emission from un-obscured
AGN (red shaded region, bottom) is significantly smaller. Bottom panel: Redshift evolution of
space density of AGN split by the level of obscuration. Different panels correspond to different
hydrogen column density interval as indicated at the top. From Buchner et al. [21]

over redshift, corresponds to sources with column densities NH > 1022 cm�2. The
contribution of obscured AGN to the accretion density of the Universe over cosmic
time is similarly large (� 75%). The contribution to the luminosity density by
Compton-thick AGN is 39˙6%. Crucially, for the first time the uncertainty on what
used to be called “missing” AGN population is below 10 %, and the Compton-thick
AGN fraction appears consistent with the requirement of CXRB synthesis models,
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suggesting we are approaching a reliable, comprehensive census of accretion onto
Supermassive black hole over a large fraction of the age of the Universe.

4.4.4 Bolometric AGN Luminosity Functions and the History
of Accretion

As we have seen in the previous sections, a qualitatively consistent picture of the
main features of AGN evolution is emerging from the largest surveys of the sky
in various energy bands. Strong (positive) redshift evolution of the overall number
density, as well as some differential evolution (with more luminous sources being
more dominant at higher redshift) characterize the evolution of AGN (see Fig. 4.18).

A thorough and detailed understanding of the AGN SED as a function of lumi-
nosity could in principle allow us to compare and cross-correlate the information on
the AGN evolution gathered in different bands. A luminosity dependent bolometric
correction is required in order to match type I (unabsorbed) AGN luminosity
functions obtained by selecting objects in different bands. This is, in a nutshell,
a direct consequence of the observed trend of the relative contribution of optical and
X-ray emission to the overall SED (the ˛ox parameter) as a function of luminosity
(see the left panel of Fig. 4.7).

Adopting a general form of luminosity-dependent bolometric correction, and
with a relatively simple parametrization of the effect of the obscuration bias on the
observed LF, [70] were able to project the different observed luminosity functions
in various bands into a single bolometric one, �.Lbol/. As a corollary from such an
exercise, we can then provide a simple figure of merit for AGN selection in various
bands by measuring the bolometric energy density associated with AGN selected in
that particular band as a function of redshift. I show this in the left panel of Fig. 4.19
for four specific bands (hard X-rays, soft X-rays, UV, and mid-IR). From this, it is
obvious that the reduced incidence of absorption in the 2–10 keV band makes the
hard X-ray surveys recover a higher fraction of the accretion power generated in the
universe than any other method.

While optical QSO surveys miss more than three quarters of all AGN of any
given Lbol, hard X-ray selection only fails to account for about one third of all AGN,
the most heavily obscured (Compton-thick) ones, as shown in the right panel of
Fig. 4.19. It is important to note that the high missed fraction for mid-IR selected
AGN is a direct consequence of the need for (usually optical) AGN identification of
the IR sources, so that optically obscured active nuclei are by and large missing in
the IR AGN luminosity functions considered here.
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Fig. 4.18 A compilation of luminosity functions observed in various energy bands. The logarithm
of the number of AGN per unit comoving volume and unit logarithm of luminosity is plotted as
a function of the observed luminosity (in solar units). Observational points for IR (15�m; filled
red squares), B-band (filled blue circles), soft- (0.5–2 keV; empty blue triangles) and hard-X-rays
(2–10 keV; empty purple triangles) are shown alongside published analytic fits for each band (solid
lines in corresponding colors). The best-fit radio luminosity functions of steep- and flat-spectrum
radio sources from Massardi et al. citemassardi:10 are also shown for comparison, with orange
and red thick lines, respectively. The observed mismatch among the various luminosity functions
in Fig. 4.18 is due to a combination of different bolometric corrections and incompleteness due to
obscuration. Courtesy of P. Hopkins
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Fig. 4.19 Left: The redshift evolution of the bolometric energy density for AGN selected in
different bands. Bolometric corrections from [70] have been used, and the shaded areas represent
the uncertainty coming from the bolometric corrections only. Right: The fraction of AGN missed
by observations in any specific band as a function of the intrinsic bolometric luminosity of the
AGN. Red, light blue, dark blue and purple shaded areas correspond to rest-frame mid-IR (15�m),
UV (B-band), soft X-rays (0.5–2 keV) and hard X-rays (2–10 keV), respectively. The uncertainty
on the missed fractions depend on the uncertainties of the bolometric corrections and on the shape
of the observed luminosity functions only

4.5 The Soltan Argument: The Efficiency of Accretion

A reliable census of the bolometric energy output of growing supermassive black
holes allows a more direct estimate of the global rate of mass assembly in AGN,
and an interesting comparison with that of stars in galaxies. Together with the tighter
constraints on the “relic” SMBH mass density in the local universe, �BH;0, provided
by careful application of the scaling relations between black hole masses and host
spheroids, this enables meaningful tests of the classical ‘Soltan argument’ [141],
according to which the local mass budget of black holes in galactic nuclei should be
accounted for by integrating the overall energy density released by AGN, with an
appropriate mass-to-energy conversion efficiency.

Many authors have carried out such a calculation, either using the CXRB as a
“bolometer” to derive the total energy density released by the accretion process [42],
or by considering evolving AGN luminosity functions [97, 106, 165]. Despite some
tension among the published results that can be traced back to the particular choice
of AGN LF and/or scaling relation assumed to derive the local mass density, it is
fair to say that this approach represents a major success of the standard paradigm
of accreting black holes as AGN power-sources, as the radiative efficiencies needed
to explain the relic population are within the range � 0:06 � 0:40, predicted by
standard accretion disc theory [136].

In general, we can summarize our current estimate of the (mass-weighted)
average radiative efficiency, h�radi, together with all the systematics uncertainties,
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within one formula, relating h�radi to various sources of systematic errors in
the determination of supermassive black hole mass density. From the integrated
bolometric luminosity function, we get:

h�radi
1 � h�radi � 0:075 Œ�0.1 � �i � �CT C �lost/	

�1 (4.5)

where �0 D �BH;zD0=4:2�105MˇMpc�3 is the local (z D 0) SMBH mass density in
units of 4.2�105MˇMpc�3 [97]; �i is the mass density of black holes at the highest
redshift probed by the bolometric luminosity function, z � 6, in units of the local
one, and encapsulate our uncertainty on the process of BH formation and seeding
in proto-galactic nuclei see e.g. [156]; �CT is the fraction of SMBH mass density
(relative to the local one) grown in heavily obscured, Compton Thick AGN; finally,
�lost is the fraction black hole mass contained in “wandering” objects, that have
been ejected from a galaxy nucleus following, for example, a merging event and
the subsequent production of gravitational wave, the net momentum of which could
induce a kick capable of ejecting the black hole form the host galaxy.

The recent progresses on the tracking of heavily obscured AGN in deep X-ray
surveys that we have highlighted in Sect. 4.4.3 [21] allows us to estimate the
contributions of un-obscured AGN, Compton-thin and Compton-thick obscured
AGN separately. Figure 4.20 shows an illustrative example of such a calculation,
where, for the sake of simplicity, the X-ray radiative energy density evolutions of
Buchner et al. [21] have been used, assuming a constant bolometric correction and
fixed the radiative efficiency of accretion to 10 %. According to this computation,

Fig. 4.20 Redshift evolution
of the total supermassive
black holes mass density. The
dark grey band shows the
overall evolution, computed
from the observed 2–10 keV
luminosity function of
Fig. 4.16, assuming, for
simplicity, a constant
bolometric correction. The
red band shows the
un-obscured AGN
contribution only, while the
blue one is for Compton-thin
objects, including
un-obscured ones. Colored
points with error bars
represent estimates of the
local SMBH mass density
from Marconi et al. [97] and
Shankar et al. [138]. Courtesy
of J. Buchner
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the fraction of black hole mass accreted in heavily obscured (CT) phases is �CT �
35 % (see Fig. 4.17), with �i < 4% (at z D 4).

In the real evolution of SMBH, all the terms in Eq. (4.5) must be linked at
some level, as the radiative efficiency of accretion depends on the location of the
innermost stable circular orbit, thus on the black hole spin, which itself evolves
under the effects of both accretion and BH-BH mergers. Accurate models which
keep track of both mass and spin evolution of SMBH could in principle be used,
together with observational constraints from the AGN luminosity functions, to put
constraints on those unknowns, providing a direct link between the relativistic
theory of accretion and structure formation in the Universe see e.g. [134, 157].
Pinning down the uncertainty of the luminosity density of accretion and of the
bolometric corrections (properly including its dependence on black hole mass,
accretion rate, possible redshift) will provide strong indirect bounds on the allowed
population of seed and “wandering” black holes.

4.5.1 Quantifying the Efficiency of Kinetic Energy Release

We close this chapter with a brief discussion of the available estimates of the
efficiency with which AGN are able to convert gravitational potential energy of
the accreted matter into kinetic energy of the radio-emitting relativistic jets. This is
a fundamental question for our understanding of accretion processes at low rates,
with potentially crucial implication for the physical nature of feedback from AGN.
To carry out this exercise, however, we need first to measure the total kinetic power
carried by those jets.

The observed omni-presence of radio cores3 in low luminosity AGN and the
observed increase in radio loudness of X-ray binaries at low luminosities can
be placed on a solid theoretical footing. Jets launch in the innermost regions of
accretion flows around black holes, and at low luminosities, these flows likely
become mechanically (i.e., advectively) cooled.

Such flows can, to lowest order, be assumed to be scale invariant: a low
luminosity accretion flow around a 10 solar mass black hole, accreting at a fixed,
small fraction of the Eddington accretion rate, will be a simple, scaled down version
of the same flow around a billion solar mass black hole (with the spatial and
temporal scales shrunk by the mass ratio). It follows, then, that jet formation in
such a flow should be similarly scale invariant.

This assumption is sufficient to derive a very generic relation between the
radio luminosity emitted by such a scale invariant jet and the total (kinetic and
electromagnetic) power carried down the jet, independent of the unknown details
of how jets are launched and collimated [67]: The synchrotron radio luminosity L�

3The “core” of a jet is the brightest innermost region of the jet, where the jet just becomes optically
thin to synchrotron self absorption, i.e., the synchrotron photosphere of the jet.
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of a self-absorbed jet core depends on the jet power Pjet through

Lradio / P
17C8˛
12

jet M�˛ � P
17
12 (4.6)

where M is the mass of the black hole and ˛ � 0 is the observable, typically flat
radio spectral index of the synchrotron power-law emitted by the core of the jet. This
relation is a result of the fact that the synchrotron photosphere (the location where
the jet core radiates most of its energy) moves further out as the size scale and the
pressure and field strength inside the jet increase (corresponding to an increase in jet
power). As the size of the photosphere increases, so does the emission. The details
of the power-law relationship are an expression of the properties of synchrotron
emission.

For a given black hole, the jet power should depend on the accretion rate as
Pjet / PM (this assumption is implicit in the assumed scale invariance). On the other
hand, the emission from optically thin low luminosity accretion flows itself depends
non-linearly on the accretion rate, roughly as Lacc / PM2, since two body processes
like bremsstrahlung and inverse Compton scattering dominate, which depend on the

square of the density. Thus, at low accretion rates, Lradio � L
17
24

bol, which implies that
black holes should become more radio loud at lower luminosities [43, 67, 108]. It
also implies that more massive black holes should be relatively more radio loud than
less massive ones, at the same relative accretion rate PM=M.

Equation 4.6 is a relation between the observable core radio flux and the
underlying jet power. Once calibrated using a sample of radio sources with known
jet powers, it can be used to estimate the jet power of other sources based on
their radio properties alone (with appropriate provisions to account, statistically,
for differences in Doppler boosting between different sources).

Nearby radio sources in massive clusters, where the cavities inflated by the
relativistic jets can be used as calorimeters to estimate the total kinetic jet power
[2, 24, 105, 121] provide such a sample. Plotting the core (unresolved) radio power
against the jet power inferred from cavity and shock analysis shows a clear non-
linear relation between the two variables [105]. Fitting this relation provides the
required constant of proportionality and is consistent (within the uncertainties) with
the power-law slope of 17=12 predicted by Eq. (4.6)

Pjet D P0

�
Lcore

L0

��
� 1:6 � 1036 ergs s�1

�
Lcore

1030 ergs s�1

�0:81
(4.7)

with an uncertainty in the slope � of 0.11, where Lradio D �L� is measured at � D
5GHz.

Because this relation was derived for the cores of jets, which display the
characteristic flat self-absorbed synchrotron spectrum, care has to be taken when
applying it to a sample of objects: only the core emission should be taken into
account, while extended emission should be excluded. Moreover, the jet have
relativistic bulk motions on the scales probed by the core emission, and the
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additional effect of relativistic beaming on the shape of the luminosity function
has to be taken into account [105]. As discussed in Sect. 4.4.1, radio luminosity
functions are separated spectrally into flat and steep sources, and we can use both
samples to limit the contribution of flat spectrum sources from both ends.

On the other hand, the same sample of radio AGN within clusters of galaxies with
measured kinetic power can be used to derive the relationship between the extended,
steep radio synchrotron luminosity and the jet power [11, 24]. This has the advantage
of being an isotropic luminosity indicator (i.e. unaffected by relativistic beaming,
as in the case of the radio cores), but is also more sensitive to the environment
(its density, magnetic field, kinematical state) the jet impinges upon. Indeed, the
most recent analysis reveals a correlation between kinetic power and low-frequency
(1.4 GHz) diffuse lobe emission of the form:

Pjet ' 6:3 � 1036 ergs s�1
�

Llobe

1030 ergs s�1

�0:7
(4.8)

Given a radio luminosity function ˚rad (and, in the case of flat spectrum radio
cores, an appropriate correction for relativistic boosting) Eqs. 4.7 and 4.8 can be
used to derive the kinetic luminosity function of jets [66, 106]:

˚kin.Pjet/ D ˚rad

"
L0

�
Pjet

P0

� 1
�

#
1

�

L0
P0

�
Pjet

P0

� 1��
�

(4.9)

The resulting kinetic luminosity functions (KLF) for the flat spectrum radio
luminosity functions have been presented in Merloni & Heinz [105].4 They show
that, at the low luminosity end, these KLF are roughly flat, implying that low
luminosity source contributed a significant fraction of the total power. These are
the low-luminosity AGN presumably responsible for radio mode feedback, and they
dominate the total jet power output at low redshift.

One can also integrate the KLF and obtain the total kinetic energy density
released by accreting black holes as radio-emitting relativistic jets. This is shown
in the lower panel on the right hand side of Fig. 4.21, both for flat spectrum radio
cores (red curves, with different assumptions about the average bulk motion Lorentz
factor of the jets, as labeled), and for the steep spectrum lobes (blue line), each with
a nominal uncertainty derived from the scatter about the relations (4.7) and (4.8).

Integrating the luminosity function over Pjet gives the local jet power density
�Pjet, which, at redshift zero, is of the order of h�Pjeti � 6 � 1039 ergs s�1 Mpc�3,
comparable to the local power density from supernovae, but will be significantly
above the supernova power in early type galaxies (which harbor massive black holes
prone to accrete in the radio mode but no young stars and thus no type 2 supernovae).

4Comparison to the steep spectrum luminosity function shows that the error in˚P from the sources
missed under the steep spectrum luminosity function is at most a factor of two.
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Fig. 4.21 Left: Red open circles show jet power (measured from X-ray cavities) plotted against
5 GHz core radio luminosity (also shown in blue solid circles is a Doppler boosting corrected
version of the same points) along the power-law fit given in Eq. (4.7); adopted from Merloni &
Heinz [105]. Right: The bottom panel shows the total kinetic energy density (in logarithmic scale)
emitted by radio AGN. The red lines correspond to integrating the flat spectrum radio LF, using
Eq.(4.7) to obtain the jet power, with different lines marking the correction due to the assumed
average bulk motion Lorentz factor, as labeled. The blue line corresponds to integrating the steep
spectrum radio LF, using Eq.(4.8) to obtain the jet power. Orange and cyan bands give an estimate
of the uncertainty derived from the observed scatter in those relations. For comparison, the black
line (with grey band) shows the bolometric radiative energy density from AGN, computed from
Hopkins et al. [70] bolometric LF, while the purple line is the estimated kinetic power injected into
galaxies by core-collapse Supernovae. The top panel shows the evolution with redshift of the ratio
between radiative and kinetic energy density released by growing black holes, separately for flat
(red) and steep (blue) spectrum radio sources

Finally, integrating ˚kin over redshift gives the total kinetic energy density uPjet

released by jets over the history of the universe, uPjet � 3 � 1057 ergs Mpc�3.
By comparing this to the local black hole mass density �BH we can derive the
average conversion efficiency �jet of accreted black hole mass to jet power: �jet �
uPjet=�BHc2 � 0.2–0.5 %

In other words, about half a percent of the accreted black hole rest mass energy
gets converted to jets, averaged over the growth history of the black hole.

For an average radiative efficiency of about h�radi � 0:1, as derived from the
Soltan argument and discussed in the previous section, the mean kinetic-to-radiative
power ratio of AGN is of the order of a few per cent, but possibly redshift dependent
(see the top right panel of Fig. 4.21). However, since most black hole mass was
accreted during the quasar epoch, when black holes were mostly radio quiet, about
90 % of the mass of a given black hole was accreted at zero efficiency (assuming that
only 10 % of quasars are radio loud). Thus, the average jet production efficiency
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during radio loud accretion must be at least a factor of 10 higher, about 2–5 %,
comparable to the radiative efficiency of quasars.
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Chapter 5
Orbital Motion in Galactic Nuclei

David Merritt

Abstract Encounters between stars and stellar remnants at the centers of galaxies
drive many important processes. The fact that these encounters take place near
a supermassive black hole (SBH) alters the dynamics in a number of ways: (1)
The orbital motion is quasi-Keplerian so that correlations are maintained for much
longer than in purely random encounters; (2) relativity affects the motion, through
mechanisms like precession of the periastron and frame dragging; (3) the SBH spin
is affected, directly by capture and indirectly by spin-orbit torques. The interplay
between these processes is just now beginning to be understood, but a key result
is that relativity can be crucially important even at distances that are thousands of
gravitational radii from the SBH.

5.1 Introduction

Supermassive black holes (SBHs) reside in galactic nuclei, and as far as we know,
they are always surrounded by stars. The “gravitational influence radius,” rinfl,
of a SBH is the radius of the sphere inside of which the gravitational force is
dominated by that of the SBH (as opposed to the collective force from the stars).
Two definitions of rinfl are in common use:

(a) The radius at which the velocity of a circular orbit around the SBH is equal to
� , the 1d velocity dispersion of stars in the nucleus:

rh � GM	
�2

� 10:8

�
M	

108 Mˇ

�� �

200 km s�1
��2

pc (5.1)

where M	 is the SBH mass.
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(b) The radius containing a mass in stars equal to twice M	:

M? .r < rm/ D 2M	: (5.2)

These two definitions are equivalent in a “singular-isothermal-sphere” nucleus,
i.e. a nucleus in which the mass density is �.r/ D �2=.2�Gr2/. The nuclear
cluster of the Milky Way is roughly of this type [34] and for the Milky Way,
rh � rm � 2–3 pc. In more massive galaxies, rm is typically greater than
rh, perhaps as much as a few times greater in the most massive galaxies. An
empirical relation between rm and M	 in luminous galaxies is [25]

rm � 35

�
M	

108 Mˇ

�0:56
pc: (5.3)

In the region r . rh or r . rm, the motion of a star should be similar to that of a
star in a Keplerian orbit about the SBH, at least until such a time as perturbations—
from the other stars, say—can cause the orbit to change. One source of perturbations
is general relativity (GR), which predicts departures from Keplerian motion when a
star comes sufficiently close to rg, the “gravitational radius”:

rg � GM	
c2

� 4:8 � 10�8
�

M	
106 Mˇ

�
pc : (5.4)

The “perturbations” due to GR can be expressed in terms of the post-Newtonian
(PN) equations of motion, as discussed in more detail below. At first sight, the
enormous difference between rinfl and rg:

rg

rh
D GM	

c2

�
GM	
�2

� 10�7
� �

100 km s�1
�2

(5.5)

would seem to suggest that effects due to relativity are negligible for almost all
stars within the influence radius. Interestingly, this turns out not to be true. While
the timescale required for GR to significantly perturb an orbit can be long, it
can nevertheless be comparable to the shortest relevant timescale for Newtonian
perturbations to act. An example from the recent literature [1] is the motion of the
so-called S-stars, the bright young stars near the center of the Milky Way. It turns
out that many of these stars—whose orbits have semimajor axes in the range 5–
50 milliparsecs (mpc), or �104rg—experience apsidal precession, due to GR, on a
shorter timescale than the time over which coherent torques from the other stars in
the nucleus (“resonant relaxation”) can change their eccentricities.



5 Orbital Motion in Galactic Nuclei 147

5.2 Perturbed Keplerian Orbits

Near a SBH, the equation of motion of a test body can be written as

Rr D �GM	
r3

r C ap (5.6)

where the first term is the (Newtonian) acceleration from the SBH, of mass M	, and
the second term represents a perturbation. Examples of perturbations include the
force from a distributed mass component; the force from a second massive body; or
the extra terms that appear in the equations of motion when relativistic effects are
included via the post-Newtonian approximation.

Throughout this chapter, the perturbing forces will be assumed to be small
compared with the Newtonian force from the SBH. In this approximation it is
useful to describe the motion, at any instant, in terms of the osculating orbit, the
Keplerian ellipse that best approximates the instantaneous motion; the effects of the
perturbation can be expressed in terms of equations that describe how the elements
of the osculating orbit change with time.

Figure 5.1 illustrates the traditional orbital elements. The semimajor axis a and
eccentricity e define the size and shape of the orbit. They are related to the energy
and angular momentum of the binary as

Ebin D �GM	m?

2a
; Lbin D �

p
Gm12a .1 � e2/ (5.7)

Fig. 5.1 The Keplerian orbit in three-dimensional space, showing the angles that define its
orientation with respect to a reference plane and a reference direction: the inclination i, the
longitude of the ascending node ˝, and the argument of periapsis !
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where m12 D M	 C m? and � � M	m?=.M	 C m?/ � m? is the reduced mass.
The radii of periapsis and apoapsis are given respectively by rp D a.1 � e/ and
ra D 1.1 C e/. Two more elements define the orientation of the orbital plane: the
inclination i, defined as the tilt of the ellipse with respect to a reference plane, and
the longitude of the ascending node, ˝ , the angle between the reference direction
and the line of intersection of the orbit with the reference plane; the latter is called
the line of nodes. Two final elements specify the location in the orbital plane: the
argument of periapsis ! is the angle between the line of nodes and the periapsis, and
the mean anomaly M gives the location along the orbit.

In the unperturbed two-body problem, all of the Keplerian elements are con-
served except for the mean anomaly, which increases linearly with time:

M D 2�

P
.t � t0/ (5.8)

with P D 2�a3=2=
p

Gm12 the orbital period and t0 the time of periapsis passage.
Kepler’s equation,

M D E � e sin E (5.9)

relates M to the eccentric anomaly E and the latter is related to the radial coordinate
as r D a .1 � e cos E/.

The Keplerian elements are the basis for a commonly used set of action-angle
variables, the Delaunay variables. The Delaunay momentum variables are the three
actions .J1; J2; J3/, where J1 D L D jr � vj, the magnitude of the angular
momentum; J2 D I D Jr C L D p

G .M	 C m?/ a, with Jr is the radial action
defined as

Jr D 1

�

Z rmax

rmin

vr dr D 1

�

Z rmax

rmin

dr

r
2E � 2˚.r/� L2

r2
I (5.10)

and J3 D Lz, the projection of L onto the z-axis. The variables conjugate to
.L; I;Lz/—the “angles”—are, respectively, the argument of periapsis !, the mean
anomaly M, and the longitude of the ascending node ˝ . In the absence of
perturbations, all of the Delaunay variables (excepting M) are conserved. Expressed
in terms of the Delaunay variables, the Hamiltonian describing relative motion in
the nonrelativistic two-body problem is simply

HKep D �1
2

�
Gm12

I

�2
; (5.11)

and the only nontrivial equation of motion is

dM

dt
D @HKep

@I
D G2m2

12

I3
D

p
Gm12

a3=2
D 2�

P
� �r: (5.12)
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In the presence of a perturbation, H might depend on other variables besides I. In
this case, the motion—that is, the rates of change of the Delaunay variables—can
be represented via Hamilton’s equations as

dI

dt
D �@H

@M
;

dL

dt
D �@H

@!
;

dLz

dt
D �@H

@˝
;

dM

dt
D @H

@I
;

d!

dt
D @H

@L
;

d˝

dt
D @H

@Lz
: (5.13)

However, these equations are rarely solved in full. Instead, use is made of the
smallness of the perturbation to simplify the equations.

Two such approximate methods will be used in this chapter. The first is the
method of averaging. Suppose that the equation of motion for an orbital element,
say ˝ , is

d˝

dt
D @H

@Lz
D g.x; y; z/ D g.I;L;Lz; !;˝;M/: (5.14)

Since the perturbation is small, many orbital periods will be required before
appreciable changes take place in any of the otherwise-conserved elements
(I;L;Lz; !;˝). It makes intuitive sense in this case to average the equations of
motion over the short timescale associated with radial motion in the unperturbed
problem. Thus one replaces the exact Eq. (5.14) by

d˝

dt

ˇ̌
ˇ̌
Av

D


d˝

dt

�
D 1

P

Z P

0

g.I;L;Lz; !;˝;M/dt; (5.15)

where it is understood that the orbital elements in the integrand (the osculating
elements) are to be regarded as constants. The result of the averaging is a set of
equations describing the gradual evolution of the elements .L;Lz;˝; !/ due to the
perturbing forces. If the perturbed motion is derivable from a velocity-independent
potential,

˚.x/ D �GM	
r

C˚p.x/; (5.16)

with ˚p the (small) perturbation, the averaged equations of motion can be expressed
in terms of the orbit-averaged Hamiltonian H ,

H D �1
2

�
GM	

I

�2
C˚ p.I;L;Lz; !;˝/;

˚p �
I

dM

2�
˚p D 1

2�

Z 2�

0

dE .1� e cos E/ ˚p.r/: (5.17)
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In evaluating the integral (5.17), one needs to express the position along the orbit in
terms of E:

r D r
h
w1.cos E � e/C w2

p
1 � e2 sin E

i
(5.18)

where r D a.1 � e cos E/ and

w1 D
0
@ cos˝ cos! � cos i sin˝ sin!

sin˝ cos! C cos i cos˝ sin!
sin i sin!

1
A;

w2 D
0
@� cos˝ sin! � cos i sin˝ cos!

� sin˝ sin! C cos i cos˝ cos!
sin i cos!

1
A (5.19)

with similar expressions for v. The integral could also be written in terms of the true
anomaly f via dM=df D .1 � e2/3=2=.1C e cos f /2. In terms of f ,

r D r Œu1 cos.f C !/C u2 sin.f C !/	 (5.20)

where p � .1 � e2/a is the semilatus rectum, r D p=.1 C e cos f /, and the unit
vectors .u1; u2/ are directed along the line of nodes toward the ascending node and
perpendicular to the line of nodes in the plane of the orbit, respectively:

u1 D
0
@ cos˝

sin˝
0

1
A; u2 D

0
@� cos i sin˝

cos i cos˝
sin i

1
A: (5.21)

In Eqs. (5.20) and (5.21), the reference plane is the x–y plane and the reference line
is the x-axis. Other useful relations are

r cos f D a .cos E � e/ ; r sin f D a
�
1 � e2

	1=2
sin E: (5.22)

A second approximate technique is based on Lagrange’s planetary equations.
Begin by resolving the perturbing force in Eq. (5.6) into components (S;T;W):

ap D Sn C Tm C Wk; (5.23)

where

n D
0
@ cos.f C !/ cos˝ � sin.f C !/ sin˝ cos i

cos.f C !/ sin˝ C sin.f C !/ cos˝ cos i
sin.f C !/ sin i

1
A
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and

m D @n
@.f C !/

; k D 1

sin.f C !/

@n
@i
: (5.24)

S is the component parallel to the separation vector r, T is the component
perpendicular to r in the orbital plane, in the direction such that it makes an angle
less than 90ı with the velocity vector, and W is the component perpendicular to
the orbital plane, in the direction of the orbital angular momentum vector. In terms
of (S;T;W), Lagrange’s equations describe the rates of change of the osculating
elements:

da

dt
D 2

n
p
1 � e2

�
Se sin f C T

p

r

�
;

de

dt
D

p
1 � e2

na

�
S sin f C T.cos f C cos E/

�
;

di

dt
D r cos.! C f /

na2
p
1 � e2

W;

d!

dt
D � cos i

d˝

dt
C

p
1 � e2

nae

�
�S cos f C T

�
1C r

p

�
sin f

�
;

d˝

dt
D r sin.! C f /

na2 sin i
p
1 � e2

W;

dM

dt
D n �

p
1 � e2

�
d!

dt
C cos i

d˝

dt

�
� S

2r

na2
: (5.25)

Again assuming that the perturbing force is small compared with the force from the
SBH, the changes in the orbital elements will be slow, and to a first approximation,
the elements (with the exception of f ) can be set to constant values on the right-hand
sides of Eq. (5.25). Integrating those equations with respect to time then gives the
first-order changes in the elements, for example,

�˝ D
Z t

t0

d˝

dt
dt D .1 � e2/2

n2a sin i

Z f .t/

f .t0/

sin.! C f /

.1C e cos f /3
W.a; e; i;˝; !I f /df ; (5.26)

where

df

dt
D na2

r2
p
1 � e2; r D a.1 � e2/

1C e cos f

have been used. The orbit-averaged rate of change, hd˝=dti, is then given by
�˝=�t after setting .t0; t/ D .0;P/ and �t D t � t0.
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In the remainder of this chapter, we will assume m? � M	, allowing us to replace
M	 C m? by M	 and � by m?. The motion of the SBH will be ignored, and the
quantities E and L will be defined as the energy and angular momentum per unit
mass of the orbiting object.

5.3 The Post-Newtonian Approximation

The Newtonian approximation breaks down for matter that orbits within a few
gravitational radii, rg, of the SBH. Einstein’s equations are notoriously difficult to
solve, even in the case N D 2, and there is essentially no prospect of obtaining
exact solutions in the case of many-body systems like galactic nuclei. Fortunately,
we would be satisfied with something far less ambitious—say, a computational
framework, preferably “Newtonian-like,” that allows us to treat the effects of
relativistic perturbations in an approximate way, with an error that is smaller than
the amplitudes of the relativistic effects themselves. Such a framework exists: it is
called the post-Newtonian (PN) approximation [38, 39]. The “small parameters”
that are the basis for the PN approximation are

ˇ D v

c
; � D Gm

c2r
; (5.27)

where r; v are typical separations and relative velocities of bodies of mass m. In
other words, one assumes that objects are moving slowly compared with the speed
of light, and that their motion never brings them very near to the gravitational radius
of another body. An additional assumption is

v2 � Gm

r
; (5.28)

that is, that characteristic velocities are of the order that would be expected in a
system that is bound together by the mutual gravitational attraction of its component
bodies. This assumption allows us to write

ˇ2 � � � 1 (5.29)

and to express the order of the PN approximation in terms of just one parameter,
for example, ˇ. Thus the lowest-order, or 1PN, approximation yields corrections to
the Newtonian accelerations of order O.ˇ2/ D O.v2=c2/, the 2PN approximation to
order OŒ.v=c/4	, etc.
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It turns out (for reasons that are too complicated to go into here [4]) that—
for N > 2—the post-Newtonian equations of motion can only be expressed in
closed form at the first PN order. The so-called Einstein-Infeld-Hoffman (EIH) 1PN
N-body equations of motion [9] are

dva

dt
D
�

dva

dt

�
N

C
�

dva

dt

�
PN

where
�

dva

dt

�
N

D
X
b¤a

Gmbxab

r3ab

; (5.30)

and

c2
�

dva

dt

�
PN

D
X
b¤a

Gmbxab

r3ab

"
�4

X
c¤a

Gmc

rac
C
X

c¤a;b

Gmc

�
� 1

rbc
C xab � xbc

2r3bc

�

�5Gma

rab
C v2a C 2v2b � 4va � vb � 3

2

�
vb � xab

rab

�2#

C
X
b¤a

Gmb .vb � va/

�
xab

r3ab

� .4va � 3vb/

�

C7

2

X
b¤a

X
c¤a;b

G2mb

rab

mcxbc

r3bc

: (5.31)

Here, xi; vi are the position and velocity of the ith particle of mass mi, xab D xb �xa,
and rab D jxabj.

The EIH equations of motion can be derived from Lagrange’s equations,

d

dt

�
@L

@vi

�
D @L

@xi
; (5.32)

if the Lagrangian is taken to be LEIH D LN C LPN with

LN D 1

2

X
a

mav
2
a C 1

2

X
b¤a

mamb

rab
;
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and

c2LPN D 1

8

X
a

mav
4
a C 1

2

X
b¤a

Gmamb

rab

�
3v2a � 7

2
va � vb � 1

2
.va � nab/ .vb � nab/

�

� 1

2

X
b¤a

X
c¤a

G2mamb

rab

mc

rac
; (5.33)

where nab D .xa � xb/=xab.
The EIH equations of motion would be the proper starting point when deriving,

for instance, the apsidal precession of an orbit due to the combined effects of GR and
the perturbations from N other stars orbiting around the SBH [41]. Surprisingly, this
calculation appears never to have been carried out, either analytically or numerically.
The more common approach has been to set N D 2 in the EIH equations, yielding
the equations of motion of a (relativistic) binary, and to separately compute the
effects of relativistic perturbations (from the SBH) and Newtonian perturbations
(from the N stars).

In the two-body problem, the effect of the 1PN terms is to induce a precession
of the orbit in a fixed plane; this is variously called the geodetic, de Sitter, or
Schwarzschild precession. If the SBH is spinning, additional terms appear at 1PN
order. The spin angular momentum of a black hole can have any value between zero,
and the maximum value allowed in the Kerr solution, or

Smax D GM2	
c
: (5.34)

The spin introduces a Lorentz-like, velocity-dependent force into the equations of
motion of an orbiting test mass. This spin-orbit acceleration causes the orbit to
precess: both an in-plane precession, which contributes additively to the geodetic
precession, and a precession of the orbital angular momentum vector about the spin
axis, which causes the plane of the orbit to change. These spin-related precessions
are collectively referred to as Lense–Thirring, or frame-dragging, precession.
In addition, the nonsphericity of a Kerr SBH implies an additional nonradial
acceleration, which to lowest order in v=c is describable entirely in terms of the
relativistic quadrupole moment Q of the spinning hole, given by

Q D � 1

c2
S2

M	
: (5.35)

The negative sign indicates that the distortion is oblate in character, that is, that the
hole is flattened in the direction parallel to its spin. The quadrupole moment contains
the lowest-order information about the flattening of space-time around the spinning
hole.
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The spin-orbit terms have amplitudes of order

GM	
r2

�
�

GM	
c2r

� v

c

�
; (5.36)

that is, O.v3=c3/ relative to the Newtonian acceleration if GM	=c2r � O.v2=c2/.
For this reason, spin-orbit effects are most often described as being of 1.5PN order
(and higher), even though they formally appear first at 1PN order.

5.4 Newtonian Perturbations

5.4.1 Distributed Mass: Spherical Case

Consider a spherical star cluster with mass density �.r/ centered on a SBH of mass
M	. The gravitational potential is

˚.r/ D �GM	
r

C ˚s.r/ (5.37)

where r2˚s D 4�G�. Because the potential is spherically symmetric, an orbiting
body will conserve angular momentum and the motion will take place in a
fixed plane, just as in the unperturbed Kepler problem. However, the frequencies
associated with the radial and angular motions in this plane will no longer be equal,
and the orbit will precess. If we assume that the force from the distributed mass
is small compared with the force from the SBH, we can apply the technique of
averaging. The averaged stellar potential is

˚ p D 1

2�

Z 2�

0

dE .1 � e cos E/ ˚s Œa .1 � e cos E/	 : (5.38)

In terms of the Delaunay variables, precession is defined as the rate of change of
!, the argument of periapsis. Using Eq. (5.13) and the definition of the angular
momentum, the orbit-averaged precession rate can be written in the following
equivalent forms:
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1 � e2

	
p
.r � rp/.ra � r/

d˚s

dr
: (5.39)
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Precession is retrograde, that is, opposite in sense to the direction of orbital
circulation. In the limit of large eccentricity, the integral in Eq. (5.4.1) simplifies to

e ! 1;
d!

dt
! �

p
1 � e2

�
p

GM	a

Z 2a

0

dr

r
r

2a � r

d˚s

dr
: (5.40)

Eccentric orbits precess slowly, regardless of the form of ˚s.
The distribution of stellar mass near the centers of galaxies is often represented

as a power law:

�.r/ D �0

�
r

r0

���
;

˚s.r/ D 4�

.2 � �/.3 � �/G�0r
2
0

�
r

r0

�2��
C constant; � ¤ 2: (5.41)

Ignoring the constant term and averaging over the unperturbed motion yields

˚p D 4�

.2� �/.3 � �/G�0r
2
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2
;�3 � �

2
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�

(5.42)

with 2F1 the ordinary hypergeometric function. The precession rate is

d!

dt
D � 4�

.2 � �/.3 � �/
G�0r20p
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; (5.43)

where

GM.e; �/ D � 1
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dx cos x .1 � e cos x/2��
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(5.44)

Here �r D 2�=P D p
GM	=a3=2 and M?.a/ is the distributed mass within radius

r D a. For � D 2,

GM.e; 2/ D
�
1C

p
1 � e2

��1
(5.45)
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while for � ¤ 2,

GM.e; �/ � 2

2 � �
˛.�/: (5.46)

Two approximations, accurate when the eccentricity is low (˛1) and high (˛2), are

˛1.�/ � 3

2
� 79

60
� C 7

20
�2 � 1

30
�3; ˛2.�/ � 3

2
� 29

20
� C 11

20
�2 � 1

10
�3:

The precession described by Eq. (5.43) is sometimes called “mass precession”
since it is due to the force from the mass distributed around the SBH.

As an alternative to averaging, we can also evaluate mass precession using
Lagrange’s planetary equation (5.25), assuming (as motivated above) that all
elements on the right hand sides of these equations remain fixed except for f , the
true anomaly. Since the perturbation is spherically symmetric, Eq. (5.23) becomes

ap D Sn; S D �GM?.r/

r2
D � 4�

3 � �
G�0r0

�
r

r0

�1��
(5.47)

where �.r/ D �0.r=r0/�� has again been assumed. Lagrange’s equations predict
that each of the elements varies periodically with time, but only! exhibits a nonzero
shift after �t D P. Lagrange’s equation for d!=dt is

d!

dt
D �S

p
1 � e2

nae
cos f I (5.48)

using the relations given above between f , r and t, this can be written

d!

df
D M?.r < a/

M	
e

.1 � e2/3��
cos f

.1C e cos f /3��
;

df
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D na2

r2
p
1 � e2: (5.49)

Writing the solution in the form

!.f / D M?.a/

M	
� H� .e; f / (5.50)

one finds

H1.e; f / D �
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1 � e2 E C 1 � e2

e
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.1C e cos f /
;

H2.e; f / D 1 � e2

e2

�
f � Ep

1 � e2

�
: (5.51)



158 D. Merritt

Fig. 5.2 Apsidal precession
in a spherical star cluster
around a SBH (“mass
precession”). Curves in the
top panel are plots of
Eq. (5.51) for orbits in a
nuclear cluster with � / r�1

and three different
eccentricities: e D 0:1

(thinnest), e D 0:2 and
e D 0:5 (thickest). The
bottom panel shows the
separation

Figure 5.2 plots the first of these relations for various values of e. Setting f D
2� recovers the apsidal shifts predicted by the averaged equations of motion, but
Lagrange’s equations also allow one to make statements about how the shift varies
as a function of position along the orbit.

A remarkable cluster of about 20 bright stars, the so-called S-stars, is observed
in the central arcsecond (roughly 0:05 pc) of the Milky Way, centered on Sgr A*,
the presumed location of the SBH. These appear to be main-sequence stars, mostly
of spectral type B [10, 12]; such stars would have masses in the range 3–15Mˇ
and main-sequence lifetimes from 10–100Myr, implying that the S-stars are quite
young, astronomically speaking. Their periods,

P D 2�a3=2p
GM	

� 1:48

�
M	

4 � 106 Mˇ

��
a

mpc

�3=2
yr; (5.52)

(mpc � milliparsec) are measured in years, and several of the S-stars have
completed a significant fraction of one full orbit since astrometric monitoring began
around 1992. The brightest S-star, called S2, also happens to have the shortest



5 Orbital Motion in Galactic Nuclei 159

period: just 15.8 yr. All of its Keplerian elements are well determined [13, 14]; the
semimajor axis and eccentricity are

a D 5:03˙ 0:04mpc; e D 0:883˙ 0:003 :

Periapsis was reached in early 2002. Equation (5.44) can be written for S2 as

�! � �230.4GM
M?.r < 5:0mpc/

104 Mˇ
; (5.53)

where GM D .1:5; 1:0; 0:68/ for � D .0; 1; 2/ and e D 0:883. Apparently, if the
distributed mass within S2’s orbit is �1% of the mass of the SBH, the shift in
! during one orbit is roughly one degree. Turning the problem around, and placing
limits on the amount of distributed mass from the measured positions and velocities,
one finds that M?.r < a/ must be less than about 104 Mˇ [15].

5.4.2 Distributed Mass: Axisymmetric Case

If the nuclear cluster surrounding the SBH is flattened or elongated, some com-
ponent of the force exerted on a test star will be perpendicular to the star’s radius
vector: in other words, there will be a torque, and the star’s angular momentum,
both magnitude and direction, can change with time. Consider first a nucleus with
rotational symmetry. The gravitational potential can be expressed in the form

˚.x/ D �GM	
r

C ˚s.r/C ˚a.x; y; z/; (5.54)

where ˚s and ˚a represent the spherical and axisymmetric mass components,
respectively. For ˚s we will continue to use Eq. (5.41). A simple density/potential
pair that represents an axisymmetric component is

�a.r; �/ D �a;0

�
r

r0

���
P2.cos �/; ˚a.r; �/ D �˚a;0

�
r

r0

�2��
P2.cos �/;

˚a;0 D 4�

�.5� �/G�a;0r
2
0 .� ¤ 0; 2/ (5.55)

with P2.x/ D .3=2/x2 � 1=2 a Legendre polynomial. This density is symmetric
about the � D 0-axis, which we identify with the z-axis; setting �a;0 > 0 then
yields a crude representation of a prolate stellar bar, while �a;0 < 0 corresponds to
an oblate nucleus. If we assume that the distributed mass is small compared with
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M	, we can replace the exact equations of motion by the equations derived from the
orbit-averaged Hamiltonian

H D �1
2

�
GM	

I

�2
C ˚ s C ˚a: (5.56)

The averaged, spherical part of the potential is given by Eq. (5.42). The averaged,
nonspherical part is
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; (5.57)

where r and z are understood to be functions of the unperturbed elements and of the
eccentric anomaly via Eqs. (5.18)–(5.19):

r

a
D 1 � e cos E;

z

a
D .cos E � e/ sin i sin! C

p
1 � e2 sin i cos! sin E:

Setting � D 1 is both physically reasonable—it corresponds approximately to the
nuclear density profile of a giant elliptical galaxy—and it also allows the results of
the averaging to be expressed in terms of simple functions:

˚ s D 2��0r0a
�
1C e2=2

	
;

˚a D ��
4

G�a;0r0a


3 sin2 i

�
1 � e2 C 3e2 sin2 !

	 � 2 � e2
�
: (5.58)

Because ˚a depends on ! and on sin2 i D 1 � .Lz=L/2, the equations of
motion (5.13) imply that L and ˝ will change with time: the line of nodes will
precess, and the eccentricity will change due to the torque from the flattened
potential. In addition, the instantaneous rate of in-plane precession, d!=dt, will
differ from the precession rate due to the spherical mass component alone: directly
because of the torques, and indirectly because the rate of precession due to the
spherical component depends on the eccentricity.

The equations of motion can be simplified further by defining dimensionless
variables. Let the dimensionless time be  D �0t, with

�0 D 2�.1C�/G�0r0

�
GM	

a

��1=2
; � D 1

4

�a;0

�0
: (5.59)
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Since � � 1, �0 � �rM?.a/=M	, or approximately the “mass precession
rate” defined in Eq. (5.44). A natural choice for the dimensionless, orbit-averaged
Hamiltonian is then H D H =�0I. We can also define a dimensionless angular
momentum variable ` � L=I D L=Lc.E/ D .1�e2/1=2, and cos i D `z=`. Expressed
in terms of these dimensionless quantities, the equations of motion (5.13) are

d!

d
D @H

@`
;

d`

d
D �@H

@!
;

d˝

d
D � @H

@`z
;

d`z

d
D @H

@˝
D 0: (5.60)

Constant terms in H—including terms that depend only on a—do not appear in the
equations of motion, and we are free to drop them. The result is

H � H

�0I
D �`

2

2
C 3

2
� sin2 i

�
`2

3
C .1 � `2/ sin2 !

�
: (5.61)

The parameter �, defined as

� � � 3�

1C�
� �3

4

�a;0

�0
; (5.62)

specifies the degree of nuclear flattening or elongation. It is easy to show that the
axis ratio q of the isodensity contours, evaluated on the principal axes, is q � 1�2�.

Because `z is conserved, H D H.!; `/. Solving this expression for ` D `.H; !/
and substituting the result into the right-hand side of the first of the equations of
motion (5.60) yields d!=d D f .!/, which can be integrated numerically. A similar
procedure yields an integrable expression for `./; and when the solutions !./ and
`./ are substituted into the third of the equations of motion, the time dependence of
˝ is likewise determined. It follows that the (orbit-averaged) motion is completely
regular [33].

Neglecting resonances, orbits fall into one of just two families, the tube orbits
and the saucer orbits. These are illustrated as the two left-hand orbits in Fig. 5.3.
They have the following properties:

• Tube orbits circulate in ! and ˝ . As long as `z is not too small, tube
orbits approximately conserve the total angular momentum as well; thus the
eccentricity and inclination are approximately constant. In configuration space,
the orbit fills an annular region and is symmetric with respect to the symmetry
plane.

• Below some `z, a second family of orbits appear in which ! librates. These are
the saucer orbits. The parent of these orbits is an orbit of fixed ` and ! D �=2,
which precesses in˝ at constant inclination, tracing out a saucer- or cone-shaped
region in configuration space. The saucer family includes orbits for which L is not
even approximately conserved, and for which the inclination varies substantially.

Figure 5.4 shows the results of numerical integrations of the averaged equations
of motion in an oblate potential (� D 0:1, or axis ratio �0:8).
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Fig. 5.3 Four major orbit families in axisymmetric or triaxial nuclei around a SBH: short-axis
tube (top left), long-axis tube (top right), saucer (bottom left), pyramid (bottom right). The
long/intermediate/short axes are x=y=z. In the axisymmetric case, only the two types of orbit on the
left exist

The saucer orbits are restricted to those parts of phase space with small Lz, but
they are important because of their eccentricity variations: a star on such an orbit
can come much closer to the SBH than would be predicted on the basis of its mean
eccentricity. To understand these orbits in more detail, we begin by noting that
in spite of their eccentricity variations, most of the saucer orbits in Fig. 5.4 never
become very circular: `2z . `2./ � 1. It is therefore reasonable to try simplifying
the Hamiltonian (5.61) by ignoring the two terms of order �`2. The result is

H � H0 � �`
2

2
C 3

2
� sin2 i sin2 !; (5.63)

with equations of motion

d!

d
D �`C 3�

`
cos2 i sin2 !;

d`

d
D �3

2
� sin2 i sin.2!/: (5.64)
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Fig. 5.4 Motion in an axisymmetric nucleus around an SBH. These are solutions to the equations
of motion derived from the averaged Hamiltonian (5.61), with � D 0:03. The three panels
correspond to different values of `z, the component of the (dimensionless) angular momentum
parallel to the symmetry axis: (a) `z D 0:4, (b) `z D 0:2, (c) `z D 0:02. Within each panel, the
different phase curves have different values of the “third integral” H. For large `z, as in panel (a),
all orbits are tubes; saucer orbits appear in this potential when `z . 0:3, in panels (b) and (c). In
these panels, the fixed-point orbit that is the “generator” of the saucers is indicated by the dot, and
the maximum angular momentum reached by saucers is indicated with a horizontal dashed line;
the lower dashed line is `z. Saucer orbits are important because their large angular momentum
variations allow stars on such orbits to come close to the SBH

The fixed point—the orbit of constant (!; `; i) that is the generator of the saucers—
can be found by setting d!=d D 0, yielding

`2 D `2fp � p
3� `z; cos2 i D cos2 ifp � `z=

p
3�: (5.65)

Evidently, a fixed point will only exist if `fp > `z, or

`z <
p
3� � `sep (5.66)

and this is the (approximate) condition for saucers to exist. Note that the requirement
for small `z implies that saucer orbits are likely to represent a small fraction of the
orbital population of an axisymmetric nucleus.

The separatrix dividing the saucers from the tubes has H0 D `2z=2, and the angular
momentum of this orbit spans the maximal range,

`min � ` � `max; `min D `z; `max D p
3� D `sep : (5.67)

It is interesting that the maximum angular momentum attained by saucers is
independent of Lz; it depends only on the degree of elongation of the nucleus. The
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inclination of the separatrix orbit likewise exhibits the maximal variation:

`zp
3�

� cos2 i � 1: (5.68)

Saucer orbits reach their maximum eccentricity near the equatorial plane; as the
orbit tilts up toward the z-axis, conservation of `z implies that ` must increase.
Conservation of `z and H0 likewise imply a simple relation between the maximum
and minimum values of ` reached by any saucer orbit:

`� D `2fp

`C
D `sep`z

`C
; `z <

p
3�: (5.69)

As `z tends to zero, Fig. 5.4 shows that saucer orbits “crowd out” tube orbits; the
only tubes that remain are highly inclined and nearly circular.

We can ask: What are the conditions on an orbit such that its minimum angular
momentum falls below some interesting value `c, allowing capture by the SBH?
Evidently we require `z < `c. If in addition `z

>�
p
3�, only tubes will exist, and the

near constancy of angular momentum for tube orbits allows us to write the capture
condition simply as ` . `c. If `z .

p
3�, saucers will exist as well; the capture

condition for saucers is `� < `c, or

`C >
`sep

`c
`z D

p
3�

`c
`z: (5.70)

Because `C can greatly exceed `z, the fraction of stars in an axisymmetric galaxy
that are available to feed the SBH can greatly exceed the fraction in an equivalent
spherical galaxy. We can estimate the fraction in an axisymmetric galaxy as follows.
In an isotropic, spherical galaxy, N.LI E/dL / L dL; suppose that the same is true in
the axisymmetric galaxy. For an orbit drawn randomly from a uniform distribution
in L2 and cos i D Lz=L, the probability that `� < `c is the product of two factors:
the first, � `2sep, asserts that the orbit is a saucer (since only very few tube orbits
near the separatrix have low `�); and the second, � `c=`sep, demands that `� D
.`z=`C/`sep < `c. The fraction of orbits with `� < `c is then � `sep`c � p

�`c.
By contrast, in a spherical galaxy, this fraction would be � `2c , that is, smaller by a
factor � `c=

p
�. At least until such a time as the saucer orbits have been “drained”

by the SBH, feeding rates in axisymmetric galaxies can be much higher than in
spherical galaxies [22].

5.4.3 Distributed Mass: Triaxial Case

The tube and saucer orbits that characterize motion near an SBH in an axisymmetric
nucleus are still present in nonaxisymmetric, or triaxial, nuclei. In fact, two families
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of tube orbits exist, circulating about both the short and the long axis of the
triaxial figure, as well as saucers that circulate about the short axis. But triaxial
potentials can also support orbits that are qualitatively different from tubes and
saucers: “centrophilic” orbits that pass arbitrarily close to the SBH. Such orbits are
potentially very important for getting stars and stellar remnants into the SBH [26].

Centrophilic orbits exist even in axisymmetric nuclei, but they are restricted to a
meridional plane, that is, to a plane that contains the z- (symmetry) axis. Orbits in
the meridional plane have Lz D 0, and so conservation of Lz does not impose any
additional restriction on the motion. Perturbing such an orbit out of the meridional
plane implies a nonzero Lz: the orbit is converted into a saucer or a tube and again
avoids the center. But in the triaxial geometry, Lz is not conserved, and it turns
out that a substantial fraction of such “perturbed” planar orbits will maintain their
centrophilic character, becoming pyramid orbits.

To illustrate how pyramid orbits arise near an SBH in a triaxial nucleus, we return
temporarily to the axisymmetric model discussed in the previous section. Consider
motion that is restricted to a meridional plane. Setting i D �=2 in the averaged
Hamiltonian (5.61) yields a simple relation between ` D .1 � e2/1=2 and ! for
motion in this plane:

e2

e20
D 1C 2�

1C 2� � 3� cos2 !
� 1C 3� cos2 ! .� � 1/: (5.71)

Here, e0 is the eccentricity when ! D �=2, that is, when the orbit is oriented
with its major axis parallel to the short (z-) axis. As the orbit precesses away from
the symmetry axis, its angular momentum decreases due to the torques from the
flattened potential. If

e0 > emin � .1 � 3�/1=2 ; (5.72)

the eccentricity reaches unity before the circulation in ! has brought the orbit to the
x-axis. In this case, circulation in ! changes to libration: the orbit—which is highly
eccentric if � is small—librates about the short axis, reaching a maximum angular
displacement �max given by

sin2 �max D 1 � e20
1 � e2min

(5.73)

(Fig. 5.5a). When � D ˙�max, the direction of the angular momentum instanta-
neously flips, and the precession (which is due almost entirely to the spherical
mass component if � is small) reverses direction as well. As discussed in more
detail below, relativistic effects would necessarily dominate the motion when the
eccentricity becomes so large; nevertheless, the essential character of the motion
predicted by this model—libration about the short axis, with the eccentricity
reaching a maximum value near the turning points—turns out to be robust.
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Fig. 5.5 (a) The origin of pyramid orbits around a SBH in a triaxial nucleus. The motion is
Newtonian: the orbit precesses due to the spherical component of the distributed mass, and at the
same time, its eccentricity changes due to the torque from the flattened potential. When � D �max,
the angular momentum drops to zero (in the orbit-averaged approximation) and the direction of
circulation about the SBH reverses, as does the sense of the precession. When perturbed out of
the plane, this orbit would become a three-dimensional pyramid orbit (Fig. 5.6). (b) A windshield-
washer orbit. Here, the motion includes the effects of the relativistic (Schwarzschild) precession.
When the eccentricity reaches a critical value (at b), the rate of Schwarzschild precession matches
the rate of mass precession; because the two act in opposite directions, the precession halts
momentarily, then reverses (b ! c). The torques continue to increase the eccentricity, until the
orbit crosses the short axis (c), after which the eccentricity starts to decrease. When e is small
enough that mass precession again dominates, the direction of precession reverses again (d). This
orbit’s name derives from the fact that motion from b ! d occurs more quickly than motion from
a ! b

If on the other hand e0 < emin, the orbit never attains unit eccentricity. The motion
then consists of circulation in ! and the eccentricity oscillates between a minimum
value of e D e0 when ! D 0 and a maximum value of e � .1 C 3�=2/e0 when
! � 0; �; : : : ; that is, when the orbit is elongated in the direction of the long axis.

The case of large eccentricity is of particular interest because stars on these orbits
are able to come closest to the SBH. We now consider this case in detail [26]. As
we will see, libration about the short axis occurs in two directions, with different
frequencies, and the orbit only attains unit eccentricity when both oscillations reach
their respective extrema at the same time (Fig. 5.6).

Let the gravitational potential be given by Eq. (5.54) with ˚a replaced by ˚t:

˚t.x; y; z/ D 2� G�t
�
Txx2 C Tyy2 C Tzz

2
	
: (5.74)

˚t can be interpreted as the potential of a homogeneous triaxial ellipsoid of density
�t—for instance, a stellar bar. The dimensionless coefficients (Tx;Ty;Tz), of order
unity, are expressible in terms of the axis ratios of the ellipsoid via elliptic functions
[6]. The x- and z-axes are assumed to be the long and short axes, respectively, of the
triaxial figure; that is, fTx;Tyg < Tz. Again assuming a power-law mass distribution,
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Fig. 5.6 Top: a pyramid orbit, seen in three projections. The z-axis is the short axis of the triaxial
figure and the SBH is at the origin. Bottom: 1 � e2 versus time, where e is the eccentricity. The
eccentricity tends to unity when the orbit reaches the corners of the pyramid’s base

Eq. (5.41), for the spherical part of the perturbing potential, the spherical part of the
averaged Hamiltonian becomes

˚ s D 4�

.2 � �/.3 � �/G�0r
2
0

�
a

r0

�2�� �
1C ˛1 � ˛2`

2
	
: (5.75)

The orbit-averaged triaxial component is given by

˚ t D 2�G�tTx a2
�
5

2
� 3

2
`2 C �

.t/
b Hb.`; `z; !;˝/C �.t/c Hc.`; `z; !/

�
;

Hb D 1

2



.5 � 4`2/.c!s˝ C cic˝s!/

2 C `2.s!s˝ � cic˝c!/
2
�
;

Hc D 1

4
.1 � c2i /Œ5 � 3`2 � 5.1� `2/c2!	;

�
.t/
b � Ty=Tx � 1 ; �.t/c � Tz=Tx � 1: (5.76)

(The shorthand sx; cx has been used for sin x; cos x.) As in the axisymmetric case,
we can simplify the Hamiltonian by dropping constant terms, including terms that
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depend only on a, and defining a dimensionless time  D �0t, where

I�0 � 2�G�0a
2

�
a

r0

��� �
4

3

˛

.3 � �/.2 � �/
C �t

�0
Tx

�
I (5.77)

henceforth, ˛ � ˛2. Since the orbit-averaged spherical potential, Eq. (5.75), has
the same dependence on `2 as the first nonconstant term in the averaged triaxial
potential, the coefficients at `2 have been summed when defining �0. Expressing �0
in terms of the radial frequency �r,

�0 D �r

�
Mt.a/

M	
3Tx

2
C Ms.a/

M	
2˛

3.2� �/

�
;

Mt.a/ � 4�

3
a3�t ; Ms.a/ � 4�

3 � � a3�0

�
a

r0

���
; (5.78)

where M.a/ denotes the mass enclosed within radius r D a. Since Mt � Ms,
�0 is related to the precession frequency due to the spherical part of the cluster,
�M D jd!=dtj, by �M � 3`�0. The dimensionless Hamiltonian H � ˚p=�0I and
the equations of motion for the osculating elements are then

H D �3
2
`2 C �bHb C �cHc;

d`

d
D �@H

@!
;

d!

d
D @H

@`
;

d`z

d
D � @H

@˝
;

d˝

d
D @H

@`z
: (5.79)

Aside from factors of order unity, the renormalized triaxiality coefficients that
appear in Eq. (5.79) are

�b;c ' �
Ty;z � Tx

	 �t

�0

�
a

r0

��
: (5.80)

Solutions to the equations of motion (5.79) that are characterized by circulation in
both ! and ˝ correspond to tube orbits about the short axis—similar to the tube
orbits in the axisymmetric geometry. Motion that circulates in ! but librates in ˝
corresponds to tube orbits about the long axis. Motion that circulates in ˝ and
librates in ! corresponds to saucer orbits.

Our primary interest here is in orbits that librate in both ! and ˝ . Since the rate
of precession in ! is proportional to `, for sufficiently low ` the triaxial torques
can produce substantial changes in ` on a precession timescale via the first term
in (5.79). As a result, the circulation in ! can change to libration and the orbital
eccentricity can approach arbitrarily close to one. As discussed above, this is the
origin of the pyramid orbits.
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Pyramid orbits can be treated analytically if the following two additional
approximations are made [26]:

1. The angular momentum is assumed to be small, `2 � 1.
2. The density of the triaxial component is assumed to be small compared with that

of the spherical component; that is, �b, �c � 1.

These two assumptions allow us to omit the second-order terms in �b; �c and `2 from
the Hamiltonian (5.79), yielding

H � H0 � �3
2
`2 C 5

2



�c.1 � c2i /s

2
! C �b.c!s˝ C cis!c˝/

2
�
: (5.81)

Pyramid orbits resemble precessing rods. Intuitively, one expects the important
variables to be the two angles that describe the orientation of the rod, and its
eccentricity. This argument suggests that we try representing the motion in terms
of a unit vector, ee, that points along the major axis of the orbit. The components of
that vector are

ex D cos! cos˝ � sin! cos i sin˝;

ey D sin! cos i cos˝ C cos! sin˝;

ez D sin! sin i; (5.82)

and e2x C e2y C e2z D 1. In terms of these variables, the Hamiltonian (5.81) takes on
a particularly simple form:

H0 D �3
2
`2 C 5

2



�c � �ce2x � .�c � �b/e

2
y

�
: (5.83)

As expected, H0 depends on only three variables: ex and ey, which describe the
orientation of the orbit’s major axis; and the angular momentum `. Taking the first
time derivatives of Eq. (5.82), and using Eq. (5.79), we find

Pex D 3`.sin! cos˝ C cos! sin˝ cos i/;

Pey D 3`.sin! sin˝ � cos! cos˝ cos i/;

where Pex � dex=d etc. Taking second time derivatives, the variables .˝; i; !/ drop
out, and the equations of motion for ex and ey turn out to be expressible purely in
terms of ex and ey:

Rex D �ex 6.H
0 C 3`2/ D �ex Œ30�c � 6H0 � 30�ce

2
x � 30.�c � �b/e

2
y 	;

Rey D �ey 6.H
0 C 3`2 � 5�b/ D �ey Œ30�c � 6H0 � 15�b � 30�ce

2
x � 30.�c � �b/e

2
y 	:

(5.84)
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Given solutions to these equations, the additional elements (`; `z; !;˝) follow from
Eqs. (5.82) and (5.84); in particular, the angular momentum is

`2 D Pe2x C Pe2y � .Pexey � ex Pey/
2

9.1� e2x � e2y/
D 1

9
.Pe2x C Pe2y C Pe2z /: (5.85)

In the limit of small amplitudes (i.e., assuming ex; ey � 1), the oscillations are
harmonic and uncoupled, with dimensionless frequencies

�.0/x D
p
15�c ; �

.0/
y D

p
15.�c � �b/: (5.86)

The corners of the pyramid’s base are defined by Pex D Pey D 0. From Eq. (5.84),
.Pex; Pey/ D 0 implies ` D 0; that is, the eccentricity reaches 1 at the corners. The full
solution in this limiting case is

ex./ D ex0 cos.�.0/x  C �x/; ey./ D ey0 cos.�.0/y  C �y/;

`2./ D `2x0 sin2.�.0/x  C �x/C `2y0 sin2.�.0/y  C �y/;

rp./ D rpx0 sin2.�.0/x  C �x/C rpy0 sin2.�.0/y  C �y/; (5.87)

where rp./ � `2./=2 is the periapsis distance and

`x0 D �.0/x ex0=3; `y0 D �.0/y ey0=3;

rpx0 D 1

18

�
�.0/x ex0

	2
; rpy0 D 1

18

�
�.0/y ey0

	2
: (5.88)

These solutions comprise a two-parameter family: ex0 and ey0 determine the extent
of the pyramid’s base, as well as the eccentricity e0 when the orbit precesses past
the z-axis; that is,

e20 D 1 � `2x0 � `2y0 D 1 � 1

9

�
�.0/x ex0

	2 � 1

9

�
�.0/y ey0

	2

D 1 � 5

3
�ce2x0 � 5

3
.�c � �b/e

2
y0: (5.89)

Equation (5.87) manifestly describe integrable motion. Remarkably, the more
general equations of motion (5.84) are integrable as well [26]. The first integral is
H0, Eq. (5.79); an equivalent, but nonnegative, integral is U where

U � 15�c � 6H0 D 15�ce
2
x C 15.�c � �b/e

2
y C .Pe2x C Pe2y C Pe2z /: (5.90)
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The second integral is obtained after multiplying the first of Eq. (5.84) by �c Pex, the
second by .�c��b/Pey, and adding them to obtain a complete differential. The integral
W is then

W D �c.Pe2x C �2x e2x � 15�ce4x/C .�c � �b/
�Pe2y C !2y e2y � 15.�c � �b/e

4
y

	
�30�c.�c � �b/e

2
xe2y ;

�2x � U C 15�c; �2y � U C 15.�c � �b/: (5.91)

The existence of two integrals (U;W), for a 2 d.o.f. system, demonstrates regularity
of the motion. It is perhaps surprising that completely regular motion can result in a
star coming arbitrarily close to the central singularity!

A star on a pyramid orbit comes close to the SBH whenever the two variables
.ex; ey/ are simultaneously close to 1—that is, near the corners of the pyramid. As
long as the frequencies of oscillation in ex and ey are incommensurable, the vector
.ex; ey/ densely fills the whole available area, which has the form of a distorted
rectangle (Fig. 5.6). According to Eq. (5.83), `2 � .1=3/Œ5�c � 2H � �ce2x � .�c �
�b/e2y 	, where ex and ey are close to sine functions. Since rp / `2, it follows that the
probability of having rp < X is almost proportional to X for small X.

Looking ahead, we note that general relativistic effects must be important, at
some times, for any pyramid orbit, since rp D a.1� e/ ! 0 near the corners of the
pyramid. The effect of GR is to limit the maximum eccentricity to a value less than
one, as discussed in Sect. 5.7.

5.5 Relativistic Orbits

5.5.1 Schwarzschild Black Holes

In the case of two point bodies, the EIH N-body Lagrangian (5.31) simplifies to

L D LN C LPN;

LN D 1

2
m1v

2
1 C 1

2
m2v

2
2 C Gm1m2

r
;

c2LPN D 1

8
m1v

4
1 C 1

8
m2v

4
2 C Gm1m2

2r

�
�
3
�
v21 C v22

	 � 7v1 � v2 � .v1 � On/ .v2 � On/ � G .m1 C m2/

r

�
; (5.92)

with

On D x1 � x2
r

; r D jx1 � x2j:
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As in the Newtonian case, we seek the equations that describe the relative motion in
the (post-Newtonian) center-of-mass frame. The total momentum is

P D @L

@v1
C @L

@v2
D m1v1 C m2v2 C 1

2
m1

v21
c2

v1 C 1

2
m2

v22
c2

v2

CGm1m2

2c2r

�
� .v1 C v2/� On� On � .v1 C v2/

	�
; (5.93)

which is conserved to 1PN order, and the center of mass is

X D m�
1v1 C m�

2 v2
m�
1 C m�

2

; m�
i � mi C 1

2
mi
v2i
c2

� 1

2

Gm1m2

r
: (5.94)

Transferring to a frame where P D X D 0, the individual positions are related to
the relative positions by

x1 D
�

m2

m
C �ım

2m2

�
v2 � Gm

r

��
x; x2 D

�
�m1

m
C �ım

2m2

�
v2 � Gm

r

��
x;

(5.95)

where

x D x1 � x2; v D v1 � v2; m D m1 C m2; ım D m1 � m2: (5.96)

and � � m1m2=m is the reduced mass. The relative motion is then

dv
dt

D �Gm On
r2

C 2 .2 � �/
Gm

c2r2
v . On � v/

C Gm On
c2r2

�
2.2C �/

Gm

r
� .1C 3�/v2 C 3

2
� . On � v/2

�
; (5.97)

with � the reduced mass ratio,

� � �

m
D m1m2

m2
: (5.98)

The Lagrangian, expressed in terms of the relative coordinates, becomes [18]

L D 1

2
v2 C Gm

r
C 1

8
.1 � 3�/ v

4

c2
C Gm

2c2r

�
.3C �/ v2 C � . On � v/2 � Gm

r

�
:

(5.99)

Exact solutions to the equation of motion (5.97) are not known. As an alternative
to searching for exact solutions, one can treat the post-Newtonian accelerations as a
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small perturbation and apply Lagrange’s equation (5.32) [5, 11, 37]. We identify the
order O.v2=c2/ terms in Eq. (5.97) with the perturbing acceleration ap in Eq. (5.6),
and set m1 D m D M	;m2 D 0. The Gaussian components of ap, Eq. (5.23), are

S D GM	
c2r2

�
4

GM	
r

C 4. On � v/2 � v2
�
; T D 4GM	

c2r2
. On � v/. Om � v/; W D 0:

(5.100)

Using

r D a.1� e2/

1C e cos f
; v2 D GM	

a.1 � e2/

�
1C e2 C 2e cos f

	
;

On � v D vr D
�

GM	
a.1� e2/

�1=2
e sin f ; Om � v D vt D

�
GM	

a.1� e2/

�1=2
.1C e cos f / ;

with f the true anomaly, we can express (S;T;W) in terms of the orbital elements as

S D G2M2	
c2a3.1 � e2/3

.1C e cos f /2
"
3.e2 C 1/C 2e cos f � 4e2 cos2 f

#
;

T D 4G2M2	
c2a3.1 � e2/3

.1C e cos f /3 e sin f ; W D 0: (5.101)

The dependence of the orbital elements on time, to first order, is then given by
substituting these expressions into Eq. (5.32), fixing all the elements except for f on
the right-hand sides, and carrying out the integrations with respect to f . In the case
of a, e, ˝ and i, the resulting expressions contain only oscillatory terms in f that
average to zero over a complete radial oscillation. In the case of !, there appears as
well a term proportional to f :

!.t/ � !.t0/ D GM	
c2a.1� e2/

�
3f C

�
�3

e
C e

�
sin f � 5

2
sin 2f

�ˇ̌̌
ˇ
t

t0

:

(5.102)

In this expression, t0 corresponds to f D 0, that is, to periapsis passage. Setting
t D P (i.e., f D 2�), the oscillatory terms vanish and the remaining term yields

�! � !.t D P/� !.t D 0/ D 6�GM	
c2a .1 � e2/

: (5.103)

This is the relativistic precession of the periastron [8] (also called “geodetic
precession,” “De Sitter precession,” or “Schwarzschild precession”). The direction
of the precession is prograde, that is, in the same angular sense as the direction
of orbital circulation. Figure 5.7 plots !.t/ over one orbital period for orbits with
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Fig. 5.7 Relativistic
precession of the argument of
periapsis ! at 1PN order.
Curves in the top panel are
plots of Eq. (5.102) for
test-particle orbits (� D 0)
and for three different
eccentricities: e D 0:5

(thinnest), e D 0:7, e D 0:9

(thickest). The bottom panel
shows the separation. Time is
in units of the radial period.
Most of the precession occurs
when the star is near periapsis

� D 0 (i.e. test-particle motion) and various eccentricities. Most of the precession
takes place near periapsis passage, particularly when the orbital eccentricity is large.

Remarkably, it turns out that—if one consistently ignores terms of second post-
Newtonian order O.v4=c4/—a “post-Keplerian” description of the motion can also
be found that is exact to this order and that looks very similar mathematically to
the nonrelativistic solution [7]. Here we summarize the important properties of that
solution.

As in the nonrelativistic case, motion takes place in a plane. Exploiting the time-
and rotational invariance of the Lagrangian (5.99), the first integrals of the motion
can be expressed as a generalized energy and angular momentum:

E D 1

2
v2 � Gm

r
C 3

8
.1 � 3�/

v4

c2
C Gm

2c2r

�
.3C �/ v2 C � . On � v/2 C Gm

r

�
;

L D jx � vj
�
1C 1

2
.1 � 3�/

v2

c2
C .3C �/

Gm

c2r

�
: (5.104)



5 Orbital Motion in Galactic Nuclei 175

The radial motion satisfies

nr.t � t0/ D E � et sin E; ; r D ar .1 � er cos E/ (5.105)

where E plays the role of eccentric anomaly, and

ar D �Gm

2E

�
1 � 1

2
.� � 7/

E

c2

�
;

er D
�
1C 2E

G2m2

�
1C 5

2
.� � 3/

E

c2

� �
L2 C .� � 6/ G2m2

c2

�� 1=2
;

et D
�
1C 2E

G2m2

�
1C 1

2
.�7� C 17/

E

c2

� �
L2 C 2 .1 � �/ G2m2

c2

�� 1=2
;

nr D .�2E/3=2

Gm

�
1 � 1

4
.� � 15/ E

c2

�
: (5.106)

The two eccentricities that appear in these relatons are called the “time eccentricity”
(et) and the “radial eccentricity” (er). Neglecting terms of order O.v4=c4/, the mean
motion can be expressed in terms of ar as

nr D
�

Gm

a3r

�1=2 �
1C Gm

2arc2
.� � 9/

�
: (5.107)

Again as in the non-relativistic problem, both the semimajor axis and mean motion
depend only on the energy.

The angular motion satisfies

� � �0 D Kf ; tan
f

2
D
�
1C e�
1 � e�

�1=2
tan

E

2
; (5.108)

where f plays the role of true anomaly; the “angular eccentricity” e� is given by

e� D
�
1C 2E

G2m2

�
1C 1

2
.� � 15/

E

c2

� �
L2 � 6G2m2

c2

�� 1=2
(5.109)

and the constant K by

K D L

.L2 � 6G2m2=c2/1=2
� 1C 3

G2m2

L2c2
: (5.110)
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From Eq. (5.105), periapsis passages occur for E D 0, 2� , 4�; : : : : The argument
of periapsis precesses each revolution by an angle

�� D 2� .K � 1/ D 6�Gm

ar
�
1 � e2r

	
c2

C O.v4=c4/; (5.111)

in agreement with Eq. (5.103).

5.5.2 Kerr Black Holes

The spin angular momentum, S, of a black hole of mass M	 is

S D ffl
GM2	

c
; 0 � � � 1 (5.112)

where � is a dimensionless spin vector and j�j D 1 for a maximally spinning hole.
The hole’s quadrupole moment, Q, was defined in Eq. (5.35):

Q D � 1

c2
S2

M	
:

In full GR, motion of a test particle around a spinning black hole is integrable if
expressed in suitable coordinates. We are concerned here with the post-Newtonian
description, hence with small deviations from Keplerian motion. Writing the mass
of the spinning black hole, m1, as M	; the mass of the orbiting (and nonspinning)
body as m2, and assuming m2 � M	; and defining On D x=r as a unit vector pointing
from M	 to m2, the spin-induced acceleration of the second body is given at 1PN
order by any of the three equivalent forms [19]

aJ D �2G2M2	
c3r3

Œ2v � � � 3 On. On � v/ � � � 3 On. On � v/ � �	

D �2G2M2	
c3r3

fv � Œ2� C 3 On � . On � �/	g

D �2G2M2	
c3r3

fv � Œ�� C 3. On � �/ On	g : (5.113)

The “gravitomagnetic” character of these equations becomes apparent if the last one
is rewritten as

aJ D �2
c

v � B; B D G

c

1

r3

�
� S C 3.S � On/ On

�
D r � A; A D G

c

S � r
r3

:

The relativistic “gravitomagnetic charge” is evidently �2GM	=c.
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The acceleration of the second body due to the quadrupole moment of the
spinning hole is, again to lowest order in v=c [2],

aQ D �3
2
�2

G3M3	
c4r4



5 On. On � OeS/

2 � 2. On � OeS/OeS � On� ; (5.114)

where OeS � S=S D �=� is a unit vector in the direction of the spin.
Because aJ is perpendicular to the relative velocity vector v, the spin does no

work on m2. However, aJ does contribute to the precession of m2’s orbit about
the spinning hole. As in previous sections, we calculate the first-order effects
by identifying aJ with the perturbing acceleration in Eq. (5.6). Without loss of
generality, the spin (which for the moment we assume to be fixed in magnitude and
direction) can be aligned with the z-axis, OeS D Oez. The Gaussian components (5.23)
of aJ are then easily seen to be

S D 2G2M2	
c2r4

�
�
xvy � yvx

	
;

T D 2G2M2	
c2r3

�
h
mx

�
�2vy C 3

y

r
vr

�
C my

�
2vx � 3x

r
vr

�i
;

W D 2G2M2	
c2r3

�
h
kx

�
�2vy C 3

y

r
vr

�
C ky

�
2vx � 3

x

r
vr

�i
; (5.115)

where Om and Ok are the unit vectors defined in Eq. (5.24); that is,

mx D � sin.! C f / cos˝ � cos.! C f / sin˝ cos i;

my D � sin.! C f / sin˝ C cos.! C f / cos˝ cos i;

kx D sin˝ sin i; ky D � cos˝ sin i:

After some algebra, one finds

S D 2.GM	/5=2

c3r4
�
p

a.1� e2/ cos i;

T D �2.GM	/5=2

c3r3
1p

a.1� e2/
e� sin f cos i;

W D 2.GM	/5=2

c3r4
p

a.1 � e2/� sin i

�
2 sin.! C f /C 3

er

a.1� e2/
sin f cos.! C f /

�
:

(5.116)
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Substituting these expressions into Eq. (5.32) and integrating with respect to f
reveals that a exhibits no variations to first order, and that e and i exhibit no secular
variations. However, the expressions for !.f / and ˝.f / both contain secular terms:

˝.f / D 2.GM	/3=2�
c3 Œa.1� e2/	3=2

�
f � 1

2
sin 2u C e

�
sin f � 1

2
sin 2u cos f

��
;

!.f / D � 2.GM	/3=2�
c3 Œa.1� e2/	3=2

cos i

�
3f � sin f

e
� 1

2
sin 2u .1C e cos f /

�
;

(5.117)

where u � ! C f . The evolution of ˝.t/ is plotted in Fig. 5.8 for three values of e
and for ! D 0. As in the case of 1PN precession of !, most of the precession in ˝
takes place near periapsis.

Fig. 5.8 Relativistic
precession of the line of
nodes, ˝, due to frame
dragging at 1.5PN order.
Curves in the top panel are
plots of Eq. (5.117) for three
different eccentricities:
e D 0:5 (thinnest), e D 0:7,
e D 0:9 (thickest). The
bottom panel shows the
separation. Time is in units of
the radial period
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The changes in these elements over one period are

.�˝/J D 4��

c3

�
GM	

.1 � e2/a

�3=2
;

.�!/J D �12��
c3

�
GM	

.1 � e2/a

�3=2
cos i D �3 cos i .�˝/J : (5.118)

These spin-related precessions are referred to collectively as the Lense–Thirring, or
frame-dragging, precession [20]. The time for frame dragging to rotate the line of
nodes by an angle � is

tJ D P

4�
P3=2 D P

4�

�
.1 � e2/c2a

GM	

�3=2
D �.1 � e2/3=2a3c3

2�G2M2	

� 1:4 � 105��1.1 � e2/3=2
�

M	
4 � 106 Mˇ

��2 � a

mpc

�3
yr;

(5.119)

where the “penetration parameter” P is defined as .1 � e2/a=rg. The last of these
relations shows that frame dragging can have appreciable effects on stellar orbits
inside a milliparsec from the Milky Way SBH, even on timescales that are shorter
than main-sequence lifetimes of massive stars [21].

Nodal precession induced by frame dragging can also be described in terms of
its effect on the direction of the angular momentum vector. A unit vector in the
direction of L is

L
L

D .sin i sin˝/ ex � .sin i cos˝/ ey C cos i ez: (5.120)

Since the magnitude of L is unchanged by frame dragging, the orbit-averaged rate
of change of L is


dL
dt

�
J

D L
.�˝/J

P

�
sin i cos˝ ex C sin i sin˝ ey

	

D 2G2M2	
c3.1 � e2/3=2a3

� � L: (5.121)

We can write this as

PLj D �j � Lj ; j D 2GS

c2a3j .1 � e2j /
3=2

(5.122)
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where the time derivative is understood to represent an orbit average, and the
subscript j denotes the jth star. The spin-orbit torque that causes the stellar orbits
to precess, also acts back on the SBH, causing its spin to precess. The instantaneous
rate of change of S is given, again to lowest post-Newtonian order, by [19]

PS D 2G

c2

NX
jD1

mj

r3j

�
xj � vj

	 � S D 2G

c2

NX
jD1

Lj � S

r3j
; (5.123)

where mj is the mass of the jth star whose distance from the SBH is rj. Since the
mean value of r�3 over the unperturbed orbit is a�3.1 � e2/�3=2, the orbit-averaged
equation for S is

PS D �S � S; �S D 2G

c2

NX
jD1

Lj

a3j .1 � e2j /
3=2
: (5.124)

The vector �S is the “spin precessional vector.”
The coupled equations (5.122) and (5.124) describe the joint evolution of the

SBH spin, and the orbital angular momenta of the N stars, due to mutual spin-orbit
torques. In the absence of any other mechanism that acts to change the orbital aj

and Lj, these equations are complete. Because the changes in S and Lj due to frame
dragging are perpendicular to the respective vectors, the magnitudes of those vectors
are conserved:

S � jSj D constant; Lj � ˇ̌
Lj

ˇ̌ D constant; j D 1; : : : ;N: (5.125)

It is easy to show also that the total (spin plus orbital) angular momentum, defined as

Jtot � S C
X

j

Lj D S C Ltot; (5.126)

is conserved. Note that Ltot is not conserved, either in magnitude or direction, nor
is the spin precessional vector �S. As the SBH precesses, both the magnitude and
direction of Ltot may change in order to keep Jtot constant [27].

Consider an idealized case in which all the stars have the same a and e; for
instance, the orbits could all lie in a circular ring. There is no differential precession
in this case, and

PS D �0 � S; PLtot D �0 � Ltot; (5.127)

where

�0 D Jtot

S
�LT; (5.128)
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�LT D 2G2M2	�
c3a3.1 � e2/3=2

� .7:0 � 105/�1
.1 � e2/3=2

�

�
M	

106 Mˇ

�2 � a

1mpc

��3
yr�1:

In this idealized case, jLtotj is conserved, and both S and Ltot precess with frequency
�0 about the fixed vector Jtot. The controlling parameter is � � Ltot=S. If � � 1,
PS � 0 and Ltot precesses about the nearly fixed SBH spin vector at the Lense–
Thirring rate. If � 
 1, PLtot � 0 and S precesses about the nearly fixed angular-
momentum vector of the stars with frequency� � �LT 
 �LT.

These results can be applied to the so-called “clockwise disk” at the Galactic
center. Its parameters are estimated to be [3, 28, 29]

5000Mˇ . MCWD . 15;000Mˇ;

rinner � 0:05 pc; router � 0:5 pc;

hei � 0:2:

The total angular momentum of the disk is roughly

Ltot � MCWD

p
GM	rCWD;

and so

� � 1

�

MCWD

M	

r
rCWD

rg
� 2

�

�
MCWD

104 Mˇ

��
rCWD

0:1 pc

�1=2
: (5.129)

Even if � is as large as one, the clockwise disk still contains roughly as much angular
momentum as the SBH. Evidently, this structure torques the SBH about as much as
it is torqued by it! However, the mutual precession time is long:

�

�LT
� 8 � 1010 ��1

�
RCWD

0:1 pc

�3
yr; (5.130)

much longer than the �107 yr age of the disk inferred from the properties of its
stars. Nevertheless, this example demonstrates that identified structures near the
Galactic center can easily contain a net orbital angular momentum that exceeds
S, and the same may well be true in other nuclei. But if timescales associated with
spin precession are to be interestingly short, then (at least in a galaxy like the Milky
Way) there must be a significant amount of rotation in stars that are somewhat closer
to the SBH than 0:1 pc.

Returning to the SBH’s quadrupole moment: it is straightforward to show that
the quadrupole adds an additional secular term to the evolution of both ˝ and !,



182 D. Merritt

leading to changes, over one period, of

.�˝/Q D 3��2

c4

�
GM	

.1 � e2/a

�2
cos i;

.�!/Q D 3��2

2c4

�
GM	

.1 � e2/a

�2 �
1 � 5 cos2 i

	
: (5.131)

The time tQ for the quadrupole torque, by itself, to rotate the line of nodes by an
angle � is

.cos i/tQ D P

3�2
P2 D P

3�2

�
.1 � e2/c2a

GM	

�2
D �.1 � e2/2a7=2c4

6�2.GM	/5=2

� 3:3 � 106��2 .1 � e2/2
�

M	
4 � 106 Mˇ

��5=2 � a

mpc

�7=2
yr:

(5.132)

Figure 5.9 plots the timescales associated with precession of orbital planes due to
frame dragging (tJ) and due to the SBH’s quadrupole moment (tQ) as functions of a
and e for stars at the Galactic center, assuming a maximally spinning SBH (� D 1);
ampc is the semimajor axis in units of milliparsecs.

Detection of orbital plane (nodal) precession for these stars allows one, in
principle, to test theories of gravity [40]. According to uniqueness, or “no-hair,”
theorems of GR, an electrically neutral black hole is completely characterized
by its mass M and its spin angular momentum S. As a consequence, all the
multipole moments of its external space-time are functions of M and S. This is
true of the quadrupole moment Q, and GR makes a unique prediction about the
relation between the nodal precession amplitudes due to quadrupole torques and
frame dragging, for an orbit of known inclination, i, with respect to the SBH’s
equatorial plane. The orbital angular momentum vector of a star is predicted to
precess according to

dL
dt

D 4�P�1P�3=2
�
1C 3

4
P�1=2� � L

L

�
.� � L/ ; (5.133)

Keplerian fits to the astrometric data for a single star yield P;P , and L for
that star. Measurement of the change in the direction of L for two stars—that is,
four numbers—yields enough information to determine � (three numbers), and,
independently, an estimate of the ratio of the first (frame-dragging) and second
(quadrupole) terms in the square brackets. If this ratio does not have the “correct”
value, a violation of the uniqueness theorems has been detected [40].

Tests like these are unaffected by the distributed mass if it is spherically
symmetric. But this assumption is certain to be violated at some level: either because
the nucleus is inherently aspherical, or due simply to the fact that the number of stars
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Fig. 5.9 Timescales associated with precession of orbital planes about the Milky Way SBH [23].
The quantities tJ and tQ are the precession timescales due to frame dragging and to the quadrupole
torque from a maximally spinning (� D 1) SBH. Line thickness denotes orbital eccentricity,
from e D 0:99 (thickest) to e D 0:9 and e D 0:5 (thinnest). The quantity tN is an estimate
of the timescale for torquing of orbital planes due to Newtonian perturbations from other stars
(“1d resonant relaxation”), assumed to have one solar mass. The line thickness denotes the total
distributed mass within 1mpc from the SBH, from 103 Mˇ (thickest) to 1Mˇ (thinnest), assuming
that density falls off as r�1. The shaded region shows the range of interesting time intervals for
observation, 1 yr � �t � 10 yr

within the orbit at any given time is finite. The effect of these additional Newtonian
perturbations on the motion is discussed in Sect. 5.7.

5.5.3 Post-Newtonian Order 2.5 and Energy Loss

In center-of-mass coordinates, the contribution of the order O.v5=c5/ terms to the
relative acceleration in the two-body problem is

a2:5 D �8
5

G2m2

c5r3
�

�
v
�
v2 C 3

Gm

r

�
� n.n � v/

�
3v2 C 17

3

Gm

r

��
: (5.134)
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Proceeding as above, we can express a2:5 in terms of its .S;T;W/ components as

S D 8

5

G3m3n

c5a3.1 � e2/9=2
� .1C e cos f /3 e sin f

�
�
14

3
C 2e2 C 20

3
e cos f

�
;

T D �8
5

G3m3n

c5a3.1 � e2/9=2
� .1C e cos f /4 e

�
4C e2 C 5e cos f

	
;

W D 0: (5.135)

Substituting these expressions into Lagrange’s equation (5.32), and integrating with
respect to true anomaly f while holding the other elements fixed, we find that first-
order changes in .˝; !; i/ are oscillatory in time, while both a and e exhibit secular
changes. (Of course, the 1PN and 2PN terms imply secular changes in !, and the
spin-orbit terms imply secular changes in˝ . The precession induced by these terms
has no effect on the secular changes in a and e.) Averaged over a single period, the
latter changes are [30]


da

dt

�
D �64

5

G3m1m2m

c5a3 .1 � e2/7=2

�
1C 73

24
e2 C 37

96
e4
�
;


de

dt

�
D �304

15

G3m1m2me

c5a4 .1 � e2/5=2

�
1C 121

304
e2
�
: (5.136)

These changes in a and e are attributable to changes in orbital energy and angular
momentum due to gravitational-wave emission [30]. If no other processes are acting
to change a or e, Eq. (5.136) imply

da

de
D 12

19

a

e

1C .73=24/e2 C .37=96/e4

.1 � e2/ Œ1C .121=304/e2	
(5.137)

with solution

a.e/ D C.a0; e0/
e12=19

1 � e2

�
1C 121

304
e2
�870=2299

; (5.138)

where C.a0; e0/ is determined by setting a.e0/ D a0. Given a0 and e0, any two
of Eqs. (5.136)–(5.137) can be numerically integrated to solve for the decay of the
orbit in the gravitational-wave-dominated regime, that is, to find a D a.t/, e D e.t/
(Fig. 5.10).
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Fig. 5.10 Joint evolution of semimajor axis, a, and eccentricity, e, as an orbit evolves in response
to gravitational-wave energy loss according to Eq. (5.137). Initial conditions (upper right) were
e D 0:9 (thin), e D 0:99, and e D 0:999 (thick)

Two types of initial condition are particularly interesting. If the eccentricity is
initially zero, then Eq. (5.136) implies de=dt D 0 and the orbit remains circular
during the decay. At the other extreme, suppose that the orbit is initially highly
eccentric, e � 1; such initial conditions are relevant to the extreme-mass-ratio
inspiral problem discussed below. In this limit, Eq. (5.137) implies

�.1� e/

.1 � e/
� ��a

a
: (5.139)

Since the periapsis distance is rp D .1 � e/a, Eq. (5.139) implies that rp remains
nearly constant as the orbit decays. In this high-eccentricity regime, loss of energy
to gravitational waves acts like a drag force that “turns on” suddenly near periapsis,
much like the atmospheric drag force that causes the orbits of artificial satellites
around the Earth to decay. By combining Eqs. (5.136) and (5.138), we can write the
rate of change of eccentricity in terms of e alone:


de

dt

�
D �304

15

G3m1m2m

c5C.a0; e0/

e�29=19.1 � e2/3=2

Œ1C .121=304/e2	1181=2299
: (5.140)
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The time to coalescence, starting from eccentricity e0, is given by the integral of this
expression from e D 0 to e D e0. The results are well approximated by

tGW � t.e D 0/� t.e D e0/

� 5:8 � 106 .1C q/2

q

�
a0

10�2 pc

�4 �m1 C m2

108 Mˇ

��3 �
1 � e20

	7=2
f .e0/ yr;

(5.141)

where q � m2=m1 � 1 is the mass ratio of the binary, and f .e0/ is a weak function
of the initial eccentricity: f .0/ D 0:979 and f .1/ D 1:81.

If the decay has gone on so long that the eccentricity has dropped nearly to zero,
the subsequent evolution is obtained by integrating Eq. (5.136) after setting e D 0:

a.t/4 � a40 D �256
5

G3m1m2m

c5
.t � t0/ (5.142)

and

tGW � t.a D 0/� t.a D a0/ D 5

256

c5a40
G3m1m2m

� 5:7 � 106 .1C q/2

q

�
a0

10�2 pc

�4 �m1 C m2

108 Mˇ

��3
yr: (5.143)

5.6 Perturbations Due to the Finite Number of Stars

Sufficiently close to a galactic SBH, the number of stars enclosed within any
orbit is so small that it may no longer make sense to represent the gravitational
potential from the stars as a smooth, symmetric function of position. Instead, the
nonsphericity of the potential may be due mostly to the fact that at any moment,
there are different numbers of stars on one side of the SBH as compared with
another. The magnitude of the torque,  , acting on a test star in this regime is roughly

j j � p
N

Gm?

a
; (5.144)

where N is the number of stars inside the test-star’s orbit, of semimajor axis a, and
m? is the mass of one star. This “

p
N torque” will dominate the torque from the

large-scale nonsphericity if

N.a/ . ��2 (5.145)
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where � is related to the nuclear nonsphericity via a relation like (5.62). So, for
instance, if the nucleus is only slightly elongated, say � � 10�2, then at radii
where N.< a/ . 104, the

p
N torques will dominate torques from the large-scale

distortion. In the Milky Way, the corresponding radius might be � 10�2 � 10�2 pc.
One can obtain an approximate understanding of the motion in this regime by
supposing that the

p
N torques are representable approximately in terms of an

axisymmetric or triaxial distortion (say), with amplitude given by � � 1=
p

N,
and applying the orbit-averaged equations derived above. What makes the problem
much more interesting, and difficult, is the fact that the orbits generating the torque
do not maintain their orientations forever: they precess, causing the direction of the
torque to change with time in some complicated way [31].

5.6.1 Coherent Resonant Relaxation

Consider two stars orbiting around an SBH, with orbits of semimajor axis a and
masses m. The stars exert a mutual torque (per unit mass) of order jhF � rij �
.Gm=a2/ � a � Gm=a. If there are N stars in the region r . a, with randomly
oriented orbits, the net torque will be of order ŒN.< a/	1=2.Gm=a/.

Define the “coherence time,” tcoh, to be the approximate time over which the
p

N
torques remain constant. For instance, tcoh might be the time scale associated with
the most rapid form of orbital precession.

Now consider the evolution of a “test” orbit over times shorter than tcoh. By
definition, the orientations of the “field” orbits are nearly constant, as is the direction
of the net torque acting on the test orbit. As a consequence, its angular momentum
will change approximately linearly with time, at a rate j PLj � p

N.Gm=a/.
Expressing this in terms of the orbital period, P D 2�a3=2=

p
GM	, and the angular

momentum Lc of a circular orbit, Lc D p
GM	a, we find for the change in L over

times�t < tcoh

�L

Lc
� p

N
Gm

a
� �tp

GM	a
� 2�

m
p

N

M	
�t

P
: (5.146)

The “coherent resonant relaxation time” can be defined as the �t for which
�L D Lc:

TRR;coh � P

2�

M	
m

1p
N

(5.147)

� 1:5 � 104
�

a

mpc

�3=2� M	
106 Mˇ

��1=2� q

10�6
��1� N

103

��1=2
yr;

where q � m=M	 and mpc is milliparsecs. Note that N on the right-hand side of this
equation is understood to be a function of a.
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Resonant relaxation is a local phenomenon, in the sense that most of the torque
comes from stars with semimajor axes close to that of the test star. As a consequence,
there is no equivalent to the ln� term that appears in nonresonant relaxation. On the
other hand, the precise value of the dimensionless factors that appear in equations
like (5.146) and (5.147) are poorly determined and will differ depending on the
details of the orbital distribution.

The coherence time is the time associated with the most rapid source of
precession of the field stars. There are three likely sources of precession near an
SBH:

1. Mass precession. Equation (5.43) gives the orbit-averaged apsidal precession rate
due a spherical distribution of mass around the SBH. The time required for !,
the argument of periapsis, to advance by � is

tM.a; e/ � 1

2
.1 � e2/�1=2

M	
M?.a/

P.a/; (5.148)

where M?.a/ is the distributed mass within radius r D a; the dimensionless
quantity GM.e; �/ defined in Eq. (5.44) has been set to 1. The precession
time defined by Eq. (5.148) depends on both a and e. The coherence time
corresponding to this precession is the average time for all orbits at r � a to
precess. Averaging Eq. (5.148) over eccentricity assuming a “thermal” (isotropic)
distribution, N.e/de D 2e de, yields the mass coherence time for orbits of
semimajor axis a:

tcoh;M � M	
Nm

P: (5.149)

2. Relativistic precession. The lowest-order relativistic corrections to the equations
of motion imply precession at a rate given by Eq. (5.165). Like mass precession,
this “Schwarzschild precession” leaves the plane of the orbit unchanged. The
time required for ! to advance by � is

tS.a; e/ D 1

6
.1 � e2/

c2a

GM	
P.a/: (5.150)

Again averaging over e assuming a thermal distribution yields the relativistic
coherence time

tcoh;S � 1

12

a

rg
P: (5.151)
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3. Precession due to resonant relaxation. By changing L, resonant relaxation causes
orbital planes to precess, with a characteristic time given by Eq. (5.147). The self-
coherence time is roughly

tcoh;N � TRR;coh � 1

2

M	
m

p
N

P: (5.152)

Comparison of Eqs. (5.149) and (5.152) shows that tcoh;M � tcoh;N=
p

N: the mass
coherence time is always shorter than the self-coherence time. But sufficiently close
to the SBH, relativistic precession must dominate: tcoh;S < tcoh;M when

a

rg
. 12

M	
mN

: (5.153)

In the coherent resonant relaxation regime, all of the components of L are
expected to change linearly with time for any test star. So, for instance, we predict

j�ej � p
N

m?

M	
�t

P
;

�� � 2�
p

N
m?

M	
�t

P
; (5.154)

where the quantity�� measures changes in the direction of L:

cos .��/ D L.t C�t/ � L.t/
L.t C�t/L.t/

: (5.155)

N-body studies [32] confirm these predictions. However there are circumstances in
which only the direction of L—and not its magnitude—is expected to change. For
instance, if the test star’s orbit is very eccentric, it may precess, due to GR, at a
much higher rate than most of the field stars. In this case, the test star’s eccentricity
is nearly conserved, and its orbit can be approximated as a thin disk: that is, the
annulus that would be obtained by averaging its motion over !. The orientation of
such an annulus can still be changed by the

p
N torques, and the time scale for such

changes is just the coherent resonant relaxation time defined above. This regime has
been called “vector resonant relaxation” or “2d resonant relaxation”.

5.6.2 Incoherent Resonant Relaxation

On timescales longer than � tcoh, the field stars precess, and the direction of the
torque acting on any single star changes. These changes in the direction of the torque
are not really random—individual orbits precess more-or-less smoothly—but to a
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first approximation, we can assume that the direction of the torque is randomized
after each �t � tcoh.

The accumulated change in L in the coherent regime is found by setting�t D tcoh

in Eq. (5.146). If the coherence time is set by mass precession,

j�Ljcoh;M � �ep
N

Lc; (5.156)

while in the case that relativistic precession dominates,

j�Ljcoh;s � �

6

a

rg

M?.a/

M	
p

N
Lc: (5.157)

Two-dimensional resonant relaxation, on the other hand, is not affected by in-plane
precession: its coherence time is longer, � tcoh;N � TRR;coh � p

Ntcoh;M. The change
in L over a coherence time due to 2d resonant relaxation would therefore seem to be

j�Ljcoh;v � �Lc: (5.158)

Of course, L cannot change by more than Lc! What Eq. (5.158) really implies is that
L rotates by an angle of order unity during each coherence time.

On timescales longer than the coherence time, the angular momentum of a
test star evolves approximately as a random walk. The accumulated change in L
over a coherence time, j�Ljcoh, becomes the step size (or “mean free path” in L)
for the random walk. It is because this step size is relatively large (a substantial
fraction of Lc) that resonant relaxation can be more efficient over the long term than
uncorrelated, or nonresonant, relaxation.

Because changes in the direction of L “saturate” already at � tcoh, no new
timescale arises for 2d resonant relaxation in the incoherent regime. In other words,
the timescale for incoherent, 2d resonant relaxation is the same as tcoh;N, Eq. (5.152):

TRR � 1

2

M	
m

p
N

P: (5.159)

In the general (3d) case, we expect changes

j�Lj � j�Ljcoh

�
�t

tcoh

�1=2
(5.160)

on timescales�t 
 tcoh. We can write this as

j�Lj
Lc

D
�
�t

TRR

�1=2
; TRR �

�
Lc

j�Ljcoh

�2
tcoh: (5.161)
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If tcoh is determined by mass precession, Eqs. (5.149), (5.156) and (5.161) imply

TRR �
�

M	
m

�
P: (5.162)

In the case that relativistic precession dominates, Eqs. (5.151), (5.157), and (5.161)
give

TRR � 3

�2
rg

a

�
M	
m

�2 P

N
: (5.163)

5.7 Combined Effects of Relativistic and Newtonian
Perturbations

For the most part in this chapter, the effects of Newtonian and relativistic pertur-
bations have been considered separately. The one exception was the discussion of
resonant relaxation in the previous section: recall that relativistic apsidal precession
can determine the “coherence time,” the time over which the Newtonian

p
N

torques remain approximately fixed. But there are a number of other contexts
in which relativistic and Newtonian perturbations interact, sometimes resulting in
qualitatively new sorts of behavior.

At 1PN order, an “exact” framework exists for the simultaneous treatment of
Newtonian and relativistic perturbations: the EIH equations of motion presented
in Sect. 5.3. In practice, the EIH equations are rarely integrated in full: in part
because they contain 3-body interactions, and as the number of bodies grows, the
computational burden of including these interactions becomes prohibitive. Instead,
each star is typically considered as a binary companion of the SBH, and the only
PN terms included are those that appear in the two-body (star-SBH) equations. The
error due to this simplification is probably not great. For instance, if one applied
the EIH equations to compute the apsidal precession of a star in a spherical cluster
around a SBH, one would expect to find additional terms of approximate amplitude

.�!/cross � .�!/1PN � .�!/M; (5.164)

the product of the Schwarzschild- and mass precessions computed separately [41].
Even if these two terms are of comparable amplitude, their individual amplitudes
are small, and the product of those amplitudes is smaller still.

In this section, three contexts in which Newtonian and relativistic perturbations
interact in interesting ways are discussed: (1) centrophilic orbits in nonspherical
nuclei [26, 36]; (2) spin-orbit precession [27]; and (3) capture of compact objects
by a SBH [24].
1. Centrophilic orbits in nonspherical nuclei. If torques from the flattened potential
of a nonspherical nucleus cause the angular momentum of a star to decrease to
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sufficiently low values—as in the case of the saucer orbits described in Sect. 5.4.2,
or the pyramid orbits described in Sect. 5.4.3—there will inevitably come a time
when precession is dominated by relativistic effects. As we will see, this fact implies
an effective upper limit on the eccentricity of such an orbit.

The orbit-averaged rate of relativistic periapsis advance is given by Eq. (5.103):

�
d!

dt

�
GR

D �r
3GM	

c2a.1� e2/
: (5.165)

The rate of precession due to the distributed (spherical) mass is given by Eq. (5.44):

�
d!

dt

�
M

� ��r
M?.r < a/

M	

p
1 � e2: (5.166)

The two frequencies are equal in magnitude when

` �
p
1 � e2 D `crit �

�
rg

a

M	
M?

�1=3
: (5.167)

When ` >� `crit, precession is dominated by the mass term and is retrograde, while
for ` . `crit, GR dominates and the precession is prograde.

Now consider the effect of the nonspherical component of the potential, and
assume that ` . `crit. In this regime, the precession rate scales as � `�2, and
for sufficiently small `, the sign of the torque as experienced by the rapidly
precessing orbit will fluctuate with such a high frequency that its net effect over
one precessional period will be negligible: in other words, GR will “quench” the
effects of the torque. To estimate the eccentricity at which this occurs, express the
torque as

 � �
GM?

a
; (5.168)

where M? is the stellar mass within r D a and � measures the degree of
nuclear elongation. The timescale over which this torque changes a star’s angular
momentum is

ˇ̌
ˇ̌1
L

dL

dt

ˇ̌
ˇ̌�1 �

ˇ̌
ˇ̌L


ˇ̌
ˇ̌ � M	

�M?

�
a3.1� e2/

GM	

�1=2
� ��1

r

M	
�M?

p
1 � e2: (5.169)

In order for L to undergo significant variation (i.e., by of order itself), this timescale
must be shorter than the timescale associated with relativistic precession, or

` >� `min � rg

a

M	
�M?

� ��1`3crit: (5.170)
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One expects that the torque due to a nonspherical mass distribution will be unable to
reduce a star’s angular momentum much below `min. Stated differently, orbits which
have ` . `min will precess so rapidly that their angular momentum hardly changes;
orbits which at some moment have ` >� `min will experience periodic changes in
angular momentum but ` will not fall below � `min. The corresponding, maximum
eccentricity is

1 � emax � 1

2
`2min � 1

2

�
rg

a

M	
�M?

�2
: (5.171)

For eccentric orbits, capture by a nonrotating SBH occurs for periapsis distances
rp . 8rg [41], i.e. for

1 � e . 8
rg

a
: (5.172)

Equations (5.171) and (5.172) are incompatible if

a �2M?.a/
2 . 1

16
rgM2	 (5.173)

and at radii that satisfy this relation, torques from a nonspherical mass distribution
will be ineffective at driving stars into the SBH.

In the axisymmetric geometry, a lower limit on ` is always set by the conserved
quantity `z, even in the absence of the quenching effects of GR. But if `min

>� `z,
the argument just presented implies that saucer-like orbits will be inhibited from
reaching the lowest `-values that would otherwise be obtainable. Figure 5.11
confirms this prediction for orbits in an axisymmetric nucleus with � � 0:03 [36].

In triaxial nuclei, every pyramid orbit reaches ` D 0 in the absence of GR, and
so adding the 1PN terms to the equations of motion determines the lower limit on `
for all of them. One finds [26] that for pyramids of a given energy, or a, Eq. (5.170)
still defines the approximate lower limit on `, but that this limit is only reached
for the pyramids with the widest bases, i.e., with the largest values of ` when
precessing past the short axis of the triaxial figure. Furthermore, in the (generic)
case of pyramid orbits that are not restricted to a principal plane, the motion is often
chaotic. Figure 5.12 shows integrations of the averaged equations of motion in a
triaxial nucleus around a SBH, for three values of the dimensionless parameter �:

� � rg

a

M	
M?.a/

(5.174)

which is of course greatest for orbits that are closer to the SBH.
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Fig. 5.11 Orbits in an axisymmetric nucleus around a nonrotating SBH; the 1PN terms have been
included in the averaged equations of motion [36]. These orbits have `z D 0:1, and `min for this
energy (cf. Eq. 5.170) is �0:15. This figure should be compared to Fig. 5.4 which does not include
the relativistic terms. In the presence of GR, there are two families of tube orbits: tube orbits above
the fixed point (shown by the cross), which are present even in the absence of GR; and tube orbits
below the fixed point, which have sufficiently small ` that relativistic precession quenches the
effects of torques due to the flattened potential. Saucer-like orbits exist in the region between the
two tube families, and it is these orbits that are inhibited by the 1PN terms from reaching high
eccentricities

ex

ey

ex

ey

ex

ey

Fig. 5.12 The effect of GR on orbits in triaxial nuclei [26]. The three orbits were all started with
the same initial conditions and in the absence of GR, each would be a pyramid orbit. The three
panels have different values of the coefficient � defined in Eq. (5.174). Left: � D 0 (regular);
middle: � D 10�6 (weakly chaotic); right: � D 10�5 (strongly chaotic). Red segments correspond
to ` < `crit, blue to ` > `crit and to the nonrelativistic case
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2. Gravitational encounters near a spinning SBH.
In Sect. 5.5.2, an expression was derived for the rate of precession of a star’s

angular momentum vector, L, due to frame-dragging torques from a spinning
SBH:

PL D �LT � L ; LT D 2GS
c2a3.1 � e2/3=2

:

Lense-Thirring torques fall off rapidly with distance from the SBH, and suffi-
ciently far away, other (Newtonian) mechanisms might be expected to dominate
changes in the Lj. Two such mechanisms were discussed above: torques from
a non-spherical (axisymmetric, triaxial) nucleus; and torques from the

p
N

asymmetry in the mass distribution in an otherwise spherical nucleus (“resonant
relaxation”).

It is interesting to calculate the “rotational influence radius”: that is: the distance
from a spinning SBH beyond which Newtonian torques begin to dominate frame-
dragging torques [27].

Consider first the case of torques due to the
p

N asymmetry in the stellar
distribution. At the small radii of interest here, apsidal precession due to the
1PN (Schwarzschild) terms (Eq. (5.103)) will occur at a much higher rate than
the rate of Lense-Thirring precession. To a good approximation, orbits can be
represented as “mass annuli,” obtained by averaging the motion over the argument of
periapsis !. These annuli will interact via the mechanism of 2d resonant relaxation
discussed in Sect. 5.6: that is: mutual torques will change their orientations but not
their eccentricities. Recall also that in this regime, there is no distinction between
coherent and incoherent RR timescales for changes in the Lj. That timescale is given
by Eq. (5.159):

TRR � 1

2

M	
m

p
N

P :

The condition that this time be longer than the Lense–Thirring precession time is

�
1 � e2

	3 � a

rg

�3
. 16�2

N.a/

�
M	
m?

�2
; (5.175)

where N.a/ is the number of stars with semimajor axes less than a. We can write
N.a/ as

N.a/ � 2M	
m?

�
a

rm

�3��
(5.176)
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with rm the radius containing a mass in stars of � 2M	. The condition (5.175)
becomes

�
1 � e2

	3 � a

aK

�6��
. 1;

aK D rg

�
8�2

M	
m?

�1=.6��/ � rm

rg

�.3��/=.6��/
: (5.177)

The radius aK is the rotational influence radius of the SBH. Just as rm defines
the sphere inside of which the gravitational force from the SBH dominates the
force from the stars, so aK defines the size of the region inside of which the
torque exerted by the (spinning) SBH dominates the collective torque from the
other stars. Figure 5.13 shows the results of N-body integrations of stars orbiting

Fig. 5.13 Evolution of orbital planes in a cluster of eight stars orbiting about the Galactic center
SBH for an elapsed time of 2 � 106 yr [23]. The SBH rotates about the z-axis with maximal
spin. Four different values were assumed for the stellar masses m?, as indicated. Stars were
placed initially on orbits with semimajor axis a D 2mpc and eccentricity 0:5 and with random
orientations. In a nucleus containing stars of a given mass, the transition between motion like that
in the first and last panels occurs at the “rotational influence radius” defined in Eq. (5.177)
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a spinning SBH, showing the increasingly strong influence of
p

N perturbations on
the evolution of the orbital planes as the stellar mass is increased.

To get an idea of the magnitude of aK, we can adopt the empirical relation
between M	 and rm given in Eq. (5.3), and set � D 1 in Eq. (5.177). The result—
appropriate for massive galaxies—is

aK � 0:16 �2=5
�

M	
108 Mˇ

�1:0 � m?

Mˇ

��1=5
pc : (5.178)

The scaling turns out to be nearly linear with M	, allowing us to say that for a
rapidly spinning SBH, the radius of rotational influence extends �104 times farther
than rg. This is another example of how relativistic effects in galactic nuclei can be
important far from the SBH event horizon.

Angular momenta of stars satisfying the condition (5.177) evolve “collision-
lessly” in response to frame dragging, unaffected by perturbations from other stars.
Differential precession will allow these stars to distribute their angular momentum
vectors uniformly about S in a time shorter than the precession time for S. Orbits
of stars beyond aK evolve essentially independently of S, in response to mutual
gravitational perturbations. But although the individual Lj of stars in this region are
randomized by the mutual torques, gravitational encounters, by themselves, leave
Ltot unchanged for these stars. Now, the torque that the stars in this outer region exert
on the SBH is determined by �S (Eq. (5.124)), not by Ltot; but conservation of Ltot

implies that the spin precessional vector will fluctuate, stochastically, about some
mean vector that is essentially constant over time and that points in roughly the same
direction as Ltot. Furthermore, since these fluctuations occur with a characteristic
time that is short compared with ��1

S , the SBH takes little notice of them, precessing
smoothly about the mean �S. Detailed modeling [27] suggests that typical spin
precessional periods are �107–108 yr for low-mass SBHs in dense nuclei, �108–
1010 yr for SBHs with masses �108 Mˇ, and �1010–1011 yr for the most massive
SBHs.

So far, we have been comparing frame-dragging torques to
p

N torques. Suppose
that the dominant source of Newtonian torques is the overall flattening of the
nucleus, rather than

p
N asymmetries. For instance, the nucleus could be axisym-

metric, and the motion (in the absence of GR) described by a Hamiltonian like that
of Eq. (5.63). We would like to define a timescale associated with changes of the
orbital plane due to this Newtonian perturbation. As discussed in Sect. 5.4.2, orbits
in axisymmetric nuclei can both librate in inclination, i, and precess in nodal angle,
˝ . For the “tube” orbits that dominate phase-space, the nodal precession is greater,
and it is easy to show that the precession rate depends approximately on the nuclear
flattening, �, as

d˝

dt
� 2�

P.a/

�M?.a/

M	
cos i: (5.179)
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The condition that the time associated with this precession be longer than the Lense-
Thirring time is approximately

�
1 � e2

	3 � a

rg

�3
. 4�2

�2

�
M	
M?

�2
; (5.180)

which is the basis for defining a second “rotational influence radius” around the
SBH. Comparing Eqs. (5.180) and (5.168), we see that Newtonian torques from the
nonsphericity of the nucleus will dominate

p
N torques if

� >�
1p
N
: (5.181)

3. Capture of compact objects. Capture of compact remnants—stellar-mass black
holes (BHs) or neutron stars—by a SBH can occur in one of two ways. (a)
Perturbations due to nearby stars and stellar remnants can cause the eccentricity
of an orbit to increase, to the point that the orbital periapsis, rp D a.1 � e/, falls
below a few rg and the object enters into the SBH. This is called a “plunge.” (b)
The time scale for energy loss due to gravitational wave (GW) emission can
become shorter than the time for orbital angular momenta to change. In this
regime, the semimajor axis shrinks, initially at roughly constant rp, until the
orbit becomes nearly circular and the BH spirals into the SBH. Such an event
is called an “EMRI”, or extreme-mass-ratio inspiral [35]. EMRIs are a potential
target of space-based GW interferometers since their inspiral could be observed
continuously over thousands or tens of thousands of orbits, allowing the signal-
to-noise ratio to be built up over time.

Figure 5.14, taken from the first direct simulation of EMRI formation [24],
illustrates an important consequence of 1PN apsidal precession. In this simulation
(consisting of 50 BHs around a SBH), orbits undergo a random walk in eccentricity
due to perturbations from other BHs, with a timescale given by Eq. (5.161), the
“incoherent resonant relaxation” time TRR. But as the eccentricity of a single orbit
increases, it can precess so rapidly due to GR that the effect of the

p
N torques is

suppressed. The result, in simulations like that of Fig. 5.14, is a “barrier” in the (a; e)
plane that “reflects” orbits back to lower eccentricities [24].

Two criteria have been suggested for the locus of this “Schwarzschild barrier”
[17, 24]. If one supposes that orbits near the barrier are precessing at a much higher
rate than the “field” stars of similar a, the gravitational potential produced by the
latter stars can be approximated as fixed over one precession cycle of the “test” star.
The maximum eccentricity attainable by the test star is then given by an equation

similar to Eq. (5.170) after replacing � by � 1=
p

N. Writing ` D �
1 � e2

	1=2
for the

angular momentum of a test star’s orbit, one predicts from that equation

` >� `SB � rg

a

M	
m?

1p
N.a/

: (5.182)
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Fig. 5.14 Two manifestations of the Schwarzschild barrier. Left: trajectories, over a time interval
of 2 Myr, of stellar-mass BHs orbiting a 106 Mˇ SBH as they undergo gravitational encounters
with each other [24]. Motion in the .a; e/ plane is mostly horizontal due to the fact that resonant
relaxation causes changes in angular momentum (i.e., e) on a timescale that is much shorter than
non-resonant relaxation causes changes in energy (i.e., a). The dashed line marked “capture” is
the assumed capture radius around the SBH; the dotted line marked “SB” is Eq. (5.182); and the
dot-dashed line marked “GW” indicates the locus in the (a; e) plane where angular momentum
losses due to gravitational radiation dominate the changes due to gravitational encounters. Only
one object manages to cross the GW line and become an EMRI; most are reflected at the barrier.
Right: first- and second-order diffusion coefficients in ` � L=Lc.E/, as functions of `, for stars of a
given a. This plot is based on integrations using a test-particle code with 400 field stars [17]. Filled
dots are h.�`/2i; the first-order coefficient, jh�`ij, is shown by (blue) crosses (where positive)
and by (red) dashes (where negative). The different regimes discussed in the text are indicated:
resonant relaxation (RR), anomalous relaxation (AR), and non-resonant relaxation (NRR). The
predicted dependence in the three regimes is shown by the three pairs of curves. The peak value
of both diffusion coefficients occurs near the intersection of the RR and AR curves, that is, at the
value of ` given by Eq. (5.188). This is essentially the same ` as given by Eq. (5.182), indicated by
the vertical dashed line. At the lowest values of `, non-resonant relaxation dominates again due to
the severe suppression of resonant relaxation

The dotted curve labelled “SB” in Fig. 5.14 is Eq. (5.182), plotted as an equality.
This simple relation can be seen to predict very well the maximum eccentricity
reached by orbits in the course of their random walks [24].

A second definition of the barrier’s location is suggested by a different argument
[17]. Consider the angular momentum diffusion coefficient h.�`/2i. In standard
treatments of resonant relaxation, which assume that test and field stars precess at
similar rates, this diffusion coefficient has the approximate form

h.�`/2iRR � constant �
�

M?.a/

M	

�2
1

N?.a/

tcoh.a/

P.a/2
�
1 � `2	 : (5.183)

(Equation (5.183) follows from Eqs. (5.146) and (5.122), with the exception of the
`-dependence, which is an approximate fit to numerical experiments [16].) At a
given a, Eq. (5.183) predicts that h.�`/2i should increase toward small `, i.e. toward
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higher eccentricities. This dependence would be expected to change near the barrier,
where rapid GR precession begins to mitigate the effects of the

p
N torques; at even

higher eccentricities, the rate of angular momentum diffusion would be expected to
drop precipitously. The “barrier” can be defined as the value of `, at specified a,
where h.�`/2i peaks (Fig. 5.14, right panel).

In order to apply this definition, it is helpful to have a theory for angular
momentum diffusion “below the barrier.” At these high eccentricities, orbital angu-
lar momenta vary on two different time scales. (a) Over a single GR precessional
period, ` undergoes nearly periodic variations as the orbit’s orientation varies with
respect to the essentially fixed torques from the field stars. (b) On time scales longer
than the coherence time—the mean precession time of the field stars—the direction
(and possibly the amplitude) of the

p
N torques change, in an approximately

stochastic manner, implying a random walk in the angular momentum of the test
star (or rather, in the value of ` averaged over one GR precession cycle).

We can model both sorts of evolution given an assumed Hamiltonian describing
the

p
N torquing potential. One simple choice, motivated by the behavior of orbits

in the N-body simulations [24], predicts for the oscillatory behavior of ` on time
scales . tcoh

`�1.!/ D 1

2`1`2
Œ.`2 � `1/ sin.!/C .`1 C `2/	 (5.184a)

D AD Œsin.!/C h	 : (5.184b)

Here, f`1; `2g are the extreme value of ` during a GR precessional cycle and h D
�H=AD D .`�1

1 C `�1
2 /=.2AD/ is a normalized, averaged (i.e. secular) Hamiltonian

H; the parameter AD depends on stellar distribution as

AD.a/ �
p

N?.a/
m?

M	
a

rg
: (5.185)

Equation (5.184) describes changes in ` due to the
p

N torques as the orbit
precesses, at a nearly constant rate, due to GR; the amplitude of the oscillations
in this regime scales as � `2av, where `av D .1=2/.`1 C `2/. These oscillations,
by themselves, do not imply any directed evolution in `. But after a time � tcoh,
the direction of the torquing potential will have changed, implying a new h and a
new `av.

As a very simple (and probably unphysical) model, one can assume that the
direction of the torquing potential changes suddenly and randomly each � tcoh.
[Allowing the direction of the torquing potential to change gradually yields qualita-
tively similar results (Alexander, 2014, private communication).] A straightforward
calculation then yields for the diffusion coefficients in h

h�hi D � 1

tcoh

1

h
; h.�h/2i � 1

tcoh
: (5.186)
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Identifying `av with `, the implied diffusion coefficients in ` are

h�`iAR � C1

`3; h.�`/2iAR � C2


`4 (5.187)

where  � tcoh=A2D. The subscript “AR” stands for “anomalous relaxation.” As
expected, the diffusion rate in this high-eccentricity regimes drops rapidly with
increasing eccentricity, as � `4 � .1 � e2/2. The right panel of Fig. 5.14 shows
that the measured diffusion coefficients in the AR regime are well fit by Eq. (5.187).

Assuming that Eq. (5.183) holds above the barrier, and that Eq. (5.187) holds
below the barrier, we can define the barrier location as the value of ` for which
h.�`/2iRR D h.�`/2iAR, that is, the value of ` at which the diffusion rate peaks.
The result, for a 
 rg, is

`2peak D 4
rg

a

tcoh

P
(5.188a)

� 4
rg

a

m?

M	
N?.a/ (5.188b)

where the latter expression assumes tcoh D tcoh;M.
Given the different functional forms of Eqs. (5.182) and (5.188), and the different

arguments that led to them, it would not be surprising to find that `SB and `peak are
very different. In fact, for reasonable models of galactic nuclei, the two quantities
can be numerically quite similar. A nucleus in which they would differ substantially
would be one in which tcoh is very long—in an extreme case, in which the field star
orbits did not precess at all. Equation (5.188) would predict a large value for `peak

in this case. But a large tcoh is equivalent to a fixed background potential, and this
was just the assumption made in writing Eq. (5.182), which would therefore still
be expected to yield a good estimate of the minimum ` attainable. This argument
suggests that Eq. (5.182) should predict the “bounce” location, even in cases where
`SB is very different from `peak; while Eq. (5.188) should play the more fundamental
role in the diffusive evolution of the stellar distribution. These predictions can in
principle be tested by numerical experiments.
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Chapter 6
Star Formation and Dynamics in the Galactic
Centre

Michela Mapelli and Alessia Gualandris

Abstract The centre of our Galaxy is one of the most studied and yet enigmatic
places in the Universe. At a distance of about 8 kpc from our Sun, the Galactic centre
(GC) is the ideal environment to study the extreme processes that take place in the
vicinity of a supermassive black hole (SMBH). Despite the hostile environment,
several tens of early-type stars populate the central parsec of our Galaxy. A fraction
of them lie in a thin ring with mild eccentricity and inner radius �0:04 pc, while
the S-stars, i.e. the �30 stars closest to the SMBH (.0:04 pc), have randomly
oriented and highly eccentric orbits. The formation of such early-type stars has
been a puzzle for a long time: molecular clouds should be tidally disrupted by the
SMBH before they can fragment into stars. We review the main scenarios proposed
to explain the formation and the dynamical evolution of the early-type stars in the
GC. In particular, we discuss the most popular in situ scenarios (accretion disc
fragmentation and molecular cloud disruption) and migration scenarios (star cluster
inspiral and Hills mechanism). We focus on the most pressing challenges that must
be faced to shed light on the process of star formation in the vicinity of a SMBH.

6.1 Introduction: The Galactic Centre as a Laboratory
for Both Dynamics and Star Formation Under Extreme
Conditions

The Galactic centre (GC) is a unique laboratory to study physical processes in
the vicinity of a supermassive black hole (SMBH). In fact, the GC hosts the
only concentration of mass (�4 � 106 Mˇ) that can be identified with a SMBH
beyond reasonable doubt [78, 211]. Furthermore, its distance from our Sun (�8 kpc)
is several orders of magnitude smaller than the distance from the other SMBH
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candidates. Despite the hostile environment due to the presence of a SMBH, the
GC is an overwhelmingly crowded environment: the observations have revealed the
presence of molecular, atomic and ionized gas, of a cusp of late-type stars, and of
�100–200 early-type stars. About 20–50 % of the early-type stars lie in a relatively
thin ring (with inner radius �0:04 pc) and follow a top-heavy mass function (MF,
e.g. [20, 143, 187, 247]). The �30 stars closest (. 0:04 pc � 1 arcsec) to SgrA� (i.e.
the radio source that is associated with the central SMBH) are B stars, with an age
<100Myr. These, named the S-stars, have very eccentric and randomly oriented
orbits. The presence of the early-type stars in the central parsec is particularly
puzzling, because the gravitational shear exerted by the SMBH disrupts molecular
clouds before they can fragment into stars.

Because of its unique characteristics, the GC has been the subject of a plethora of
studies and of a few dedicated reviews (e.g. [75, 176]) over the last �20 years. Our
review does not pretend to be either more complete or detailed than previous ones.
Rather, it looks at the GC from a slightly different perspective: it focuses on the
young stars that populate the GC, and on the theoretical scenarios that have been
proposed to explain their formation and their dynamical evolution.

The review is structured as follows. In Sect. 6.2, we briefly summarize the state-
of-the-art knowledge about the GC from an observational point of view, focusing
on those aspects that are more relevant for the formation of the early-type stars. In
Sect. 6.3, we discuss the main scenarios that have been proposed for the formation
of the early-type stars (including disc fragmentation, molecular cloud disruption,
inspiral of a star cluster and tidal break-up of binaries). Section 6.4 is devoted to the
dynamical evolution of the early-type stars, considering both different relaxation
mechanisms and secular processes. Finally, Sect. 6.5 deals with the main theoretical
scenarios which have been proposed to explain the nature of one of the most peculiar
objects that have been observed in the GC: the dusty object G2.

6.2 A Crowded Environment

In this Section, we briefly review the most updated observations of the main
components of the GC: the SMBH (Sect. 6.2.1), the young and old stars (Sect. 6.2.2),
the gas component (Sect. 6.2.3) and the recently discovered, very puzzling G2
cloud (Sect. 6.2.4). We also discuss the possibility that the GC hosts one or
more intermediate-mass black holes (IMBHs), i.e. black holes with mass in the
102–105 Mˇ range (Sect. 6.2.5).

In the next Sects. 6.3–6.5, we will focus on the theoretical interpretation of
such observations, and in particular on the processes that drive the formation and
evolution of stars in the GC.
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6.2.1 The Supermassive Black Hole

The very first hints for the presence of a SMBH candidate in the centre of the Milky
Way (MW) came from the detection of a very compact radio source [18] in the
innermost parsec.

The first attempts to estimate the mass enclosed in the central parsec are radial
velocity measurements of ionized gas located in the structure which is known as
minispiral [126]. On the other hand, the radial velocity of ionized gas may be
affected by a plethora of processes besides gravity. Thus, the first strong claim for
a dark mass in the centre of the MW came from radial velocity measurements of
stars, obtained by means of near-infrared (NIR) spectra of the stellar population in
the central parsecs (e.g. [100, 158, 218]). These early measurements indicated the
presence of �3�106 Mˇ confined in �0:1 pc, corresponding to a minimum density
of �3 � 109 Mˇ pc�3. Such density is still consistent with a cluster of compact
stellar remnants (e.g. [147]). The first measurements of stellar proper motions
with diffraction-limited NIR observations [59, 73, 77] strengthened the constraints
significantly, indicating a 2:6˙ 0:6� 106 Mˇ dark mass confined within �0:01 pc,
corresponding to a minimum density �1012 Mˇ pc�3. This density excludes the
star cluster of compact remnants [73] and leaves only two possible candidates:
either a SMBH or a fermion ball (e.g. [234]). Tracing the orbit of the so called
S2 (or S0-2) star (with an orbital period Torb D 15:9 yr) led to the measurement
of 3:7 ˙ 1:5 � 106 Mˇ [211] and 4:0 ˙ 0:6 � 106 Mˇ ([78], see also [79, 81])
in the inner 0.0006 pc. Finally, the most recent estimate of the S2 orbit leads to
mBH D 4:30˙ 0:20stat ˙ 0:30sys � 106 Mˇ (where mBH is the mass of the SMBH,
[83]). This value comes from a joint fit of New Technology Telescope (NTT),
Very Large Telescope (VLT) and Keck astrometric data ranging from 1992 to 2003
(see Table 1 of [83]). The largest source of uncertainty in this measurement is our
distance from the GC (D 8:28˙ 0:15stat C 0:29sys km, [82, 83]; see also [175]).

One of the open questions about the SMBH is its possible past activity. The
strongest hint for a past activity is represented by fluorescent X-ray line emission
(e.g. [227]), especially the 6.4 keV Fe K˛ line. This line is emitted by various
molecular clouds in the GC (e.g. [196]). The lines emitted from different clouds
might be triggered by different sources (e.g. different X-ray binaries), but this
possibility is not supported by observations of currently active X-ray sources. Thus,
if the fluorescent X-ray line emission comes from a single source, such source must
have been powerful enough: it might be the ‘echo’ of an energetic flaring event of
Sgr A� that occurred several hundreds years ago, such as the tidal disruption of a
star or of a smaller body (e.g. [121, 248]; see [175] for a recent review on this and
related topics).

Recently, [201] reported the discovery of a young magnetar (SGR J1745�2900)
at 2:4˙0:3 arcsec projected distance from SgrA�. The probability that the magnetar
is a foreground or background object is very low (�10�6), while the probability that
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it is on a bound orbit around the SMBH is non-negligible. If SGR J1745�2900 is
on a bound orbit, the fluorescent X-ray line emission in the GC might be easily
explained by a past (�100 year ago) giant flare by the magnetar. This scenario is a
non-unlikely alternative to a past flare by Sgr A�.

6.2.2 The Stars: Old Stars, Early-Type Stellar Disc(s),
and S-Stars

6.2.2.1 The Nuclear Star Cluster

The ensemble of the (both young and old) stars in the central few parsecs is often
referred to as the nuclear star cluster (NSC) of the MW. NSCs are located at
the photometric and dynamical centre of almost all spiral galaxies (e.g. [46] and
references therein), but the NSC of the MW is the only one where single stars can
be resolved and their proper motions measured [74, 213–215, 233]. Eckart et al.
[57] and Genzel et al. [72] derived number density counts from high-resolution
NIR speckle imaging observations between 1 and 20 arcsec and found that the
stellar density scales as � / r�2 (isothermal profile). Some indication for a cusp
(rather than a cored) central density was reported by Eckart et al. [58] and by
Alexander [3].

Genzel et al. [74] combined high-resolution stellar number counts from
NACO1 H- and K-band imaging data of the very central region (0:1–10 arcsec),
with lower resolution number counts from speckle imaging observations at
10 � R=arcsec � 100 (where R is the projected distance from Sgr A�). These
data are best-fitted by a broken power-law

�� D 1:2 � 106 Mˇ pc�3
�

R

10 arcsec

��˛
; (6.1)

with ˛ D 2:0˙ 0:1 (˛ D 1:4˙ 0:1) at R � 10 arcsec (R < 10 arcsec).
Schödel et al. [213] confirm and refine this result, by means of an homogeneous

sample of high-resolution data (using the NIR camera and spectrometer ISAAC at
the ESO VLT UNIT telescope 4 on Paranal, see Fig. 6.1). They find a best-fitting
power-law

�� D 2:8˙ 1:3 � 106 Mˇ pc�3
�

R

6 arcsec

��˛
; (6.2)

1The adaptive optics module NAOS and the NIR camera CONICA (abbreviated as NACO) are
mounted at the ESO 8 m-class VLT unit telescope 4 on Cerro Paranal, Chile.
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Fig. 6.1 Colour image
composed of ISAAC imaging
observations at 2.09�m and
in the J-band. The
field-of-view is 15000 � 15000.
The field of about 4000 � 4000

that was observed with
adaptive-optics observations
is marked by a square. The
galactic plane runs
approximately
southwest-northeast across
the image. From Fig. 1 of
[213]

with ˛ D 1:75 (˛ D 1:2) at R � 6 arcsec (R < 6 arcsec). Thus, the updated break of
the power law is Rbreak D 6˙ 1 arcsecD 0:22˙ 0:04 pc. This implies that the NSC
contains about twice the SMBH mass in<2 pc (see Fig. 6.2). The main assumptions
that have been done to obtain this result are (i) that the velocity dispersion is constant
outside 0.22 pc; (b) that the NSC is spherically symmetric, does not rotate and is
isotropic; (c) that the [16] mass estimator can be used in the case of NSC; (d) that
the mass-to-light ratio is 2 Mˇ=Lˇ at 2�m [100], to estimate the unresolved stellar
component.

Schödel et al. [214] use multi-epoch adaptive-optics assisted NIR observations,
obtained with NACO at VLT, to study the proper motions of >6000 stars in
the central parsec of the MW (with uncertainties <25 km s�1). They find that
stellar velocities are purely Keplerian only in the inner .0:3 pc, while the velocity
dispersion is nearly constant at r > 0:5 pc (see Fig. 6.3). Furthermore, [214] suggest
that the velocity dispersion is isotropic. This result has been recently revised by
Chatzopoulos et al. [37], who claim that there are significant differences between
proper motion dispersions along different axes, due to a flattening of the NSC. In
addition, the NSC is found to rotate parallel to Galactic rotation [37, 214, 233].

The mass of the central SMBH is not sufficient to explain the observed proper
motions. In particular, [214] model the mass distribution as

M.r/ D mBH C 4 �

Z r

0

dQr Qr2 �.Qr/; (6.3)
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Fig. 6.2 Left-hand panel: estimate of the enclosed mass versus projected distance (black line),
derived with the Bahcall-Tremaine (BT, [16]) mass estimator, assuming a broken power-law
structure of the stellar cluster and a constant line-of-sight velocity dispersion outside of the break
radius (see text for details). The up-pointing red arrow is the enclosed mass estimate based on the
bright star IRS 9 [203]. The circle at 1.6 pc is the mass estimate based on the assumption that the
circumnuclear ring (CNR) is a rotating ring with a rotation velocity of 110 km s�1 and a radius
of 1.6 pc [39]. The circle at 2.0 pc is the mass estimate based on the assumption that the CNR
is a rotating ring with a rotation velocity of 130 km s�1 and a radius of 2.0 pc [95, 204]. Green
line: enclosed mass after subtraction of the SMBH mass, derived from the BT mass estimator
(black). Red line: estimated mass of the visible stellar cluster. The dashed lines indicate the 1�
uncertainties. Right-hand panel: density of the enclosed mass, after subtraction of the SMBH mass
(black). The red line indicates the mass density of the stellar cluster. The dashed lines indicate the
1� uncertainties. From Fig. 19 of [213]

where

�.r/ D �0

�
r

5 pc

��
 �
1C r

5 pc

�
�4
(6.4)

and minimize the �2 of the proper-motion measurements with three free parameters:
mBH, 
 and M�.< 1 pc/ (where M�.< 1 pc/ is the mass of stars inside 1 pc). For

 � 0 and 3:5 . mBH=.10

6 Mˇ/ . 4:5, M� > 0:4 � 106 Mˇ (see Fig. 6.4).
Similar results can be found assuming an anisotropic distribution of the velocity
dispersion. This result strengthens the evidence for a massive NSC. We notice that
the best-fitting value for the mass of the SMBH (mBH D 3:6C0:2

�0:4 � 106 Mˇ, at
68 % confidence level) is smaller than the one derived from the orbits of the S-stars
[82], although the former is marginally consistent with the latter. Furthermore, even
values of 
 < 0 (i.e. ‘centrally evacuated’ mass models) are allowed by the fit
shown in Fig. 6.4.

Recently, [37] did a similar analysis using 2500 line-of-sight velocities and
10,000 proper motions obtained with VLT instruments, and 200 maser velocities
(see [65] for a description of the data sample). Using axisymmetric Jeans modeling
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Fig. 6.3 Top: mean projected radial and tangential velocities versus projected distance from
Sgr A� (left) and versus angle east of north (right). Bottom: projected radial (green) and tangential
(blue) velocity dispersions in the GC NSC versus projected distance from Sgr A� (left) and versus
angle east of north (right). From Fig. 6 of [214]

to fit the proper motion and line-of-sight velocity dispersions, [37] obtain new best
estimates for the NSC mass, black hole mass, and distance M�.r < 10000/ D
.9:26˙ 0:31jstat ˙ 0:9jsyst/� 106 Mˇ, mBH D .3:88˙ 0:14jstat ˙ 0:4jsyst/� 106 Mˇ,
and R0 D 8:30˙ 0:09jstat ˙ 0:1jsyst kpc, respectively.

6.2.2.2 The Disc(s) of Early-Type Stars

The presence of young massive stars in the central parsec of the MW has been
discussed for a long time ([8, 9, 127, 205]; see [176] for a review). So far, more
than a hundred young massive stars have been observed in the vicinity of Sgr A�
([20, 25, 26, 58, 71, 74, 123, 124, 130, 174, 187, 229], see Fig. 6.5). Many of them are
O-type and Wolf-Rayet (WR) stars. Radial velocity and spectral type of these stars
have been thoroughly investigated thanks to spectroscopy, while proper motions
and brightness have been provided by photometry. The most recent spectroscopic
data include observations with the integral field spectrograph SINFONI ([20] and
references therein) at the ESO/VLT, and with the OH-Suppressing Infrared Imaging
Spectrograph (OSIRIS) at the Keck II telescope [54]. The most recent photometric
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Fig. 6.4 Results of isotropic
modelling of the NSC. The
three free parameters
(mBH;M?.r < 1 pc/; 
 ) were
varied in comparing the fit of
the model to the velocity
dispersion data. Black thick
curves are contours of
constant �2, separated by a
constant factor of 100.3;
dashed red curves indicate
(68 %, 90 % and 99 %)
confidence intervals. Blue
thin curves are contours of
the best-fit value of
M?.r < 1 pc/ at each value of
(mBH; 
 ); these curves are
labelled by M?=10

6 Mˇ. The
overall best-fit model is
indicated by the filled circle.
From Fig. 14 of [214]

Fig. 6.5 Sample of 90 WR/O
stars (mK < 14 and
�.vz/ � 100 km s�1) in the
central 0.5 pc of our Galaxy:
blue circles indicate CW
orbits (61 WR/O stars) and
red circles indicate
counterclockwise orbits (29
WR/O stars). The black
circles show projected
distances of 0.”8, 3.”5, 7”, and
12” from Sgr A�. Squares
indicate the exposed fields
with SINFONI in the 25 mas
pixel�1 and 100 mas pixel�1

scale. The whole inner 0.5 pc
region is contained in lower
resolution (250 mas pixel�1

scale) SINFONI observations
[187]. From Fig. 1 of [20]

data include observations with NACO at the ESO/VLT [20, 233] and with NIRC2
at the Keck II telescope [54].

The analysis of orbital angular momentum directions shows that some of the
early-type stars lie in a disc [20, 54, 129, 142, 143, 187, 245]. This disc is called
clockwise (CW) disc, because it shows CW motion when projected on the plane of
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Fig. 6.6 Cylindrical equal area projections of the distributions of significance in the sky for three
radial bins: 32 WR/O stars with projected distances in the bin 0.”8–3.”5 (left-hand panel), 30
WR/O stars in the bin 3.”5–7” (central panel), and 28 WR/O stars in the bin 7”–12” (right-hand
panel). The position of the CW disc and of the (possible) counterclockwise disc as derived by [187]
are marked with black circles. In the inner bin there is a maximum excess significance of 13.9 �
at .�; �/ D .256ı; 54ı/, compatible with the CW system of [187]. The significance map in the
middle interval shows two extended excesses, one for CW and one for counterclockwise orbits. The
CW excess has a local maximum significance of 5.4 � at .�; �/ D .262ı; 48ı/, compatible with
the orientation of the CW system of [187], but a global maximum significance of 5.9 � at a clearly
offset position: .�; �/ D .215ı; 28ı/. The significance map in the outer bin shows a maximum
excess significance of 11.5 � at yet another position .�; �/ D .179ı; 62ı/. The morphology of the
excesses in the CW system may indicate a smooth transition of the excess centre with projected
radius. From Fig. 11 of [20]

the sky [74, 187]. The fraction of early-type stars that actually belong to the CW
disc is still debated: the recent study by Yelda et al. [247] indicates that only �20%
of early-type stars lie in the CW disc, while previous studies (e.g. [54, 143]) suggest
a higher fraction (�50%).

Bartko et al. [20] compute significance maps from the sky maps of the density of
reconstructed angular momentum directions of the observed stars (�obs), by defining
the significance for each bin of the sky map as

significance D �obs � h�isoi
�iso; rms

; (6.5)

where h�isoi and �iso; rms are the mean density and the root mean square density (of
angular momentum directions) for a set of simulated stars following an isotropic
distribution, respectively.

From left to right, the three panels of Fig. 6.6 show the significance maps (derived
as described above) for stars with distance 0.”8–3.”5, 3.”5–7” and 7”–12” (i.e.
0.032–0.14 pc, 0.14–0.28 pc and 0.28–0.48 pc) from Sgr A�. We recall that a razor-
thin disc is expected to define an infinitely small circle in these maps. It is apparent
that only the stars in the bin closest to Sgr A� define a unique disc, consistent
with the CW disc. In the intermediate bin, various features are present. One of
these features is still consistent with the CW disc, while the other features may be
interpreted as a second dismembered disc or as outliers of the CW disc. A relevant
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portion of these ‘outliers’ shows counterclockwise motion, which has been claimed
to indicate the presence of a second dissolving disc [20, 141, 142]. Finally, the stars
in the outer bin mostly belong to a single disc, but offset with respect to the inner bin.

The results shown in Fig. 6.6 have the following crucial implications.

(a) Only a fraction of the early-type stars in the central parsec are members of the
CW disc.

(b) The probability for an early-type star to be member of the CW disc decreases
with increasing distance from the centre.

(c) The CW disc is likely warped and/or tilted, as the orientation of its normal
vector changes by several degrees (�60ı, [20]) from its inner to its outer edge.

Recently, [247] consider a sample of 116 stars, for which they measure both
proper motions and, in a few cases, accelerations. Yelda et al. [247] compute
significance maps from the sky maps of the density of reconstructed angular
momentum directions, using a formula very similar to Eq. (6.5) ([247] normalize
the significance to the standard deviation rather than to the root mean square
density). Similarly to [20], they group the stars into three radial bins: 0”.8–3”.2,
3”.2–6”.5 and 6”.5–13”.3 (i.e. 0.032–0.128pc, 0.128–0.26pc and 0.26–0.532 pc).
Figure 6.7 shows the resulting density of normal vectors for the three bins. The
main results are:

(a) there are no statistically significant signatures of a counterclockwise disc. It
seems that the two discs scenario is definitely dead.

(b) The existence of a CW disc is confirmed with high significance in the inner bin,
but there is no clear evidence that the CW disc extends to the two outermost
radial bins. Thus, the outer radius of the CW disc might be as small as �0:13 pc
(rather than �0:5 pc, as discussed by Bartko et al. [20]).

(c) Since the CW disc extends only to �0:13 pc, it is neither significantly warped
nor tilted.

The results by Yelda et al. [247], if confirmed, will significantly change our previous
picture of the early-type stars in the GC.

Furthermore, [247] measure the orbital eccentricity of stars in their sample
(Fig. 6.8). They confirm that the peak of the eccentricity distribution is at e �
0:2–0:4 and the distribution of eccentricities is quite broad, as found in previous
studies [20, 54, 142, 143, 245]. On the other hand, [247] show that the distribution
of eccentricities is much narrower if only stars with detected acceleration are
considered (Fig. 6.8). In particular, the resulting average eccentricity is hei D
0:27˙ 0:07 and the high-eccentricity tail disappears.

The most recent estimate of the age of the early-type stars is tage � 2:5–6Myr
[143]. This result comes from integral-field spectroscopy (using the OSIRIS spec-
trometer on Keck II), with a completeness of 50 % down to magnitude K0 D 15:5
(i.e. stellar mass �10Mˇ), combined with photometry using the NIRC2 instrument
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Fig. 6.7 Density of normal vectors for stars in the three separate radial bins: 0.”8–3.”2 (top), 3.”2–
6.”5 (middle), and 6.”5–13.”3 (bottom). The CW disc feature at (i, ˝) = (130ı , 96ı) is prominent
in the inner radial bin and shows a decrease in density with radius. The degenerate orbital solutions
associated with the CW disc stars are seen as the slight density enhancement near (i, ˝) � (130ı ,
300ı) in the top panel. The middle radial interval shows hints of the CW disc and extended
structure around this location. In the outermost radial bin, a density enhancement is seen at (i, ˝)
= (117ı, 192ı). The same scaling is used in each plot to show the relative strength of the features.
The horizontal lines represent i and are spaced 30ı apart and the longitudinal lines represent ˝
and are spaced 45ı apart, with the line marked E representing ˝ = 0ı. Figure 14 of [247]



216 M. Mapelli and A. Gualandris

Fig. 6.8 Left: eccentricity distribution of the CW disc. All orbital solutions falling within 15.2ı of
the disc are included, thereby weighting the distributions by disc membership probability. Right:
eccentricity distributions shown separately for likely disc members with acceleration detections
(solid) and without (dashed). From Fig. 12 of [247]

on Keck II [54]. The analysis of the data is based on Bayesian inference methods
([143], see Fig. 6.9). A previous estimate indicated tage D 6 ˙ 2Myr [187].
Furthermore, [253] have found possible indications of gas outflows, suggesting
recent star formation (104�5 yr) within 0.6 pc of SgrA�.

The MF of the early-type stars has been claimed to be very top-heavy for a long
time. Paumard et al. [187] suggest an MF similar to dN=dm � m�˛ , with ˛ D 0:85

(we recall that the Salpeter MF has ˛ D 2:35, [207]) and a total mass �104 Mˇ.
The result of [187] was obtained from the luminosity function of the most massive
WR and O-type stars and suffered from lack of sensitivity for magnitude K > 13

(i.e. stellar mass<20Mˇ). Bartko et al. [21] find an even flatter mass-function, with
best-fitting slope ˛ D 0:45˙ 0:3.

Recently, [143] use the same data and the same Bayesian approach as in [54].
They derive a new best-fitting slope ˛ D 1:7 ˙ 0:2 (see Fig. 6.9), still flatter than
a Salpeter MF, but considerably steeper than previous estimates. Consequently, the
total mass of the early-type stars is also revised, suggesting a value in the 1:4–3:7�
104 Mˇ range (extrapolated down to stars with mass 1Mˇ).

Finally, by means of stellar evolution models, [140] showed that the total
observed luminosity in the central parsec of the NSC is better matched by a
continuous star formation over the Galaxy’s lifetime, following a [125] MF, than
by a long-standing top-heavy MF. This suggests that, if the early-type stars follow a
top-heavier MF than the rest of the NSC, the circumstances that led to the formation
of the early-type stars must be very peculiar, since these have not affected most of
the NSC.
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Fig. 6.9 Two-dimensional posterior probability distribution functions (PDFs) for the observed
properties of the early-type stars (from [143]). The over-plotted contours give 68 %, 95 %, and
99 % confidence intervals. Weak correlations exist between age, mass, and initial MF (IMF) slope.
The correlation between the total mass and the age or IMF slope is a consequence of the age–IMF
slope relationship since, at older ages, the most massive stars have disappeared and the total mass
must increase to match the observed numbers of stars brighter than KP D 15:5. From Fig. 10 of
[143]
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The existence of very young (a few Myr old) stars in the inner parsec has been
an enigma for a long time. The observed MF (flatter than the Salpeter MF) and
the orbits of these early-type stars (belonging to one or two discs plus a number of
possible outliers) open several additional questions. The new results by Yelda et al.
[247], which indicate that only 20 % of the early-type stars are members of the CW
disc (see also [208]) and that the CW disc may be much smaller than previously
thought, open further issues.

The early-type stars that cannot be considered members of the CW disc,
because of the different angular momentum direction (in some cases, they are even
counterclockwise), might be either genuine outliers (i.e. stars that were born outside
the CW disc) or former members of the CW disc or even members of other (partially
dismembered) discs. The existence of other stellar discs (in addition to the CW
disc) is still an open question. The mechanisms that can either dismember a disc or
perturb the orbits of some of its members are even more debated. In the next sections
(Sects. 6.3 and 6.4), we will review which theoretical scenarios have been proposed
to explain these open questions.

6.2.2.3 The S-Stars

The few stars whose orbits are (totally or partially) inside the innermost arcsecond
(�0:04 pc) are referred to as the S-star cluster [62, 78, 79, 82, 212]. The orbits
of �25–30S-stars are known with accuracy, by means of NIR imaging and
spectroscopy. In particular, the motion of the S-stars has been tracked since 1992 at
NTT and VLT, and since 1995 at Keck. Most of the S-stars have been classified as
B0–9V stars, with ages between 6 and 400 Myr [62]. Gillessen et al. [82] recently
derived the orbital solutions of 28 S-stars: 22 early-type stars and 6 late-type S-
stars (S17, S21, S24, S27, S38 and S111). These are the first late-type S-stars with
measured orbits. Thus, most of the S-stars (but not all of them) are early-type stars.

Six of the 28 S-stars studied by Gillessen et al. [82] appear to be members of the
CW disc: they have semi-major axis � 100, eccentricity e � 0:2–0:4 and angular
distance to the CW disc between 9ı and 21ı. The orbits of the 22 remaining S-stars
do not lie in a disc: they are consistent with a random distribution in space (see
Fig. 6.10).

The distribution of semi-major axes of the 22 ‘true’ S-stars (see Fig. 6.11) is best-
fit (using a log-likelihood fit) by n.a/ � a0:9˙0:3 [82], corresponding to a number
density n.r/ � r�1:1˙0:3, consistent with the mass profile [74, 213].

The distribution of eccentricities of the 22 ‘true’ S-stars (see Fig. 6.11) is best-fit
(using a log-likelihood fit) by n.e/ � e2:6˙0:9 [82]. This means that the eccentricities
of S-stars are much larger than those of the CW disc. The best-fit distribution is
somewhat skewed toward larger eccentricity with respect to the thermal distribution
(n.e/ � e), typical of two-body relaxed systems.
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Fig. 6.10 Stellar orbits of the
stars in the central arcsecond
for which [82] determined the
orbits. The coordinate system
was chosen such that Sgr A�

is at rest. From Fig. 16 of [82]

Fig. 6.11 Top: cumulative
PDF for the semi-major axis
of the early-type stars with
a < 0:005. The two curves
correspond to the two ways to
plot a cumulative PDF, with
values ranging either from 0
to .N � 1/=N or from 1=N to
1. Solid line: best fit
(n.a/ � a0:9˙0:3). Bottom:
cumulative PDF for the
eccentricities of the
early-type stars that are not
identified as disc members.
As in the top panel, the two
curves correspond to the two
ways to plot a cumulative
PDF. Dashed line: n.e/ � e;
Solid line: best fit
(n.e/ � e2:6˙0:9). From
Figs. 20 and 21 of [82]
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Among the S-stars, the S2 star is particularly important because so far it has
provided the strongest constraints on the SMBH mass (e.g. [81–83]). S2 has been
classified as a B0–2.5 V main sequence star with an estimated zero-age main
sequence mass of 19:5Mˇ [155]. It is bright (K � 14) and has a very short orbital
period (15.9 years). Astrometric data taken from 1992 to 2003 (see Sect. 6.2.1)
allowed to track one entire orbit. Unfortunately, during pericentre passage (2002) S2
showed a puzzling photometry, which might be due to confusion with a fainter star
(see [82] for this issue). For sake of curiosity, S2 is not the shortest-known-period
star orbiting the SMBH: S102 has a period of only 11.5 years [165]. Astrometric
data (NIRC on Keck) covered one entire orbit of S102. On the other hand, S102 is
a factor of 16 fainter than S2.

The S-star cluster is one of the most enigmatic components of the GC: most of
the S-stars are early-type stars and cannot have formed in situ, with a pericentre so
close to the SMBH (this is the so called ‘paradox of youth’, [78]). Furthermore, their
eccentricities are very high, but these stars are too young to have undergone two-
body relaxation. They have different orbital properties with respect to the early-type
stars in the CW disc, because of the larger eccentricities and because of the random
orientation of their orbital planes. Does this necessarily mean that the S-stars are a
different population with respect to the CW disc? If they are a different population,
where do they come from? Alternatively, is there any perturbation which can affect
the stars in the CW disc and change their orbital properties till they match those of
the S-stars? These questions and the main scenarios for the formation of S-stars will
be discussed in Sects. 6.3 and 6.4.

6.2.3 The Molecular Gas and the Ionized Gas

The GC is a very crowded environment not only from the point of view of the
stellar population, but also for the gas. The central �20 parsecs of the MW are rich
in molecular, atomic and ionized gas, which form very peculiar structures.

The main reservoirs of ionized gas are Sgr A East and Sgr A West [183, 254],
both observed in radio and both overlapped with Sgr A� (see the schematic
illustration in Fig. 6.12). Sgr A East is a non-thermal elliptical shell source elongated
along the Galactic plane with a major axis of length �10 pc [56, 183, 250]. Its centre
is displaced by 2.5 pc (in projection) with respect to Sgr A�. Sgr A East is generally
thought to be a supernova remnant.

Sgr A West is a spiral-shaped thermal radio source [64, 216], which surrounds
Sgr A�. For its shape, Sgr A West is often called the ‘minispiral’. The three main
arms of the minispiral are called the ‘Northern Arm’ (pointing towards North), the
‘Eastern Arm’ (pointing towards East) and the ‘Western Arc’ (pointing towards
West). The nature of the minispiral is very debated. According to a popular scenario,
the minispiral arms might be streams associated with molecular gas falling in
towards the centre [136, 254, 255].
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Fig. 6.12 Schematic diagram
showing the sky locations and
rough sizes and shapes of GC
sources discussed in
Sect. 6.2.3. Red star: Sgr A�;
magenta ring: CNR; blue
spiral: the minispiral (i.e.
Sgr A West); yellow ellipse:
Sgr A East; the two turquoise
ellipses: the M–0.02–0.07
and the M–0.13–0.08 cloud.
A solid red line indicating the
orientation of the Galactic
plane has been drawn through
the position of Sgr A�. The
Galactic eastern direction is
indicated. One arcminute
corresponds to about 2.3 pc at
the distance of 8 kpc. This
diagram has been inspired by
Fig. 1 of [183]

A clumpy, inhomogeneous and kinematically disturbed ring of molecular gas,
known as the circumnuclear ring (CNR) or the circumnuclear disc (CND), surrounds
the minispiral (Fig. 6.13). The CNR was discovered about 30 years ago [23]
via detection of double-lobed emission at 50 and 100�m, from dust. After the
discovery, the CNR has been observed extensively at radio to infrared wavelengths
(e.g. [34, 39, 41, 42, 51, 55, 69, 95, 113, 153, 154, 170, 173, 184, 219, 228, 230, 238,
244, 251, 256]).

The observations indicate that the CNR is a ring of molecular gas and dust with
an inclination of �50–70ı with respect to the observer. The ring is nearly complete
in HCN (Fig. 6.13), but with a large gap in the north (corresponding to the position
of the Northern Arm of the minispiral) and other smaller gaps. The inner radius of
the ring is �1:5 pc (de-projected) and it is quite sharp, while the outer radius is less
defined: HCN, CO and HCOC were observed out to �7 pc, but recent studies (e.g.
[244]) suggest an outer edge at 3–4 pc. The CNR has a thickness of �0:4 pc at the
inner edge [113] and expands to �2 pc in the outer parts [238]. The total mass of the
CNR is highly uncertain. Measurements based on the dust thermal emission indicate
a total mass of �2 � 104 Mˇ ([135, 167], but see [39] for a different estimate).
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Fig. 6.13 Velocity integrated (i.e., moment 0) images of the 12CO 3–2, HCN 4–3, and CS
7–6 transitions in the region of the CNR. The synthesized beam of the Submillimeter Array
(SMA) observations is shown in the bottom right. The contours of the 12CO 3–2 image start
at the value 1000 Jy beam�1 km s�1, and are drawn at intervals of 1000 Jy beam�1 km s�1 . The
contours of the HCN 4–3 and CS 7–6 images are 50 Jy beam�1 km s�1�Œ1; 2; 4; 8; 16; 32	 and
30 Jy beam�1 km s�1�Œ1; 2; 4; 8; 16	, respectively. Integration of the signal over a 20 km s�1

velocity range has an rms noise level of 5.8 Jy beam�1 km s�1 (2.2 K km s�1). The bottom right
panel shows an overlay of these lines, in yellow (12CO 3–2), magenta (HCN 4–3) and cyan (CS
7–6) colors. W-1, W-2, W-3 and W-4 in the bottom right panel indicate the four western streamers
of the CNR. Crosses in the CS image mark the pointing centers of the SMA mosaic observations.
From Fig. 6 of [134]
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The CNR rotates with a velocity �110 km s�1 [39, 153], but the velocity field
shows local perturbations, which may indicate a warp or the presence of different
streamers. This is the reason why previous studies proposed that the CNR formed
through the collision of two molecular clouds (e.g. [95]) or through the assembly of
multiple dynamically different streamers (e.g. [113]).

Recently, [134] made wide-field images (�500 resolution) of three high-excitation
molecular gas tracers (12CO3–2, HCN 4–3, CS7–6) in the region of the CNR
(�50 � 50 field-of-view), using the Submillimeter Array (SMA). They also made
a 20” resolution CS 1–0 image using the National Radio Astronomy Observatory
(NRAO) Green Bank Telescope. The high-excitation lines observed with the SMA
trace the dense and warm gas (>105 cm�3, >30K), while the CS 1–0 traces the
less dense and cooler gas (�5 � 104 cm�3, <10K). Liu et al. [134] find that several
�5–20 pc-scale gas streamers either directly connect to the CNR or penetrate inside
it (see2 Fig. 6.13). Thus, the CNR appears to be the centre of an inflow, quite
reminiscent of the molecular gas streaming in the nucleus of NGC 1068 [177]. Liu
et al. [134] speculate that the CNR may be dynamically evolving, continuously fed
via gas streamers and in turn feeding gas toward the centre.

The observations also indicate an ongoing interaction between the CNR and the
minispiral [39]. The strongest interactions likely occur along the Western Arc and
the Northern Arm of the minispiral. The ionized gas in the Western Arc is oriented
along the CNR and it is immediately interior to the CNR. For this reason, the
Western Arc has been proposed to be the inner edge of the CNR, ionized by the
central stellar cluster. This idea is confirmed by the velocity field [39]. Furthermore,
the minispiral Northern Arm may connect with the northeastern extension of the
CNR to form a single collimated structure [39].

Christopher et al. [39] identify 26 resolved molecular gas cores within the
CNR. These have a characteristic diameter of �0:25 pc, a typical density of a few
�107 cm�3 and a typical mass of a few �104 Mˇ. The density of the molecular cores
is sufficient to prevent tidal disruption at �1–2 pc distance from Sgr A�, indicating
that the CNR may be a long-lived structure and may be able to form stars. In fact,
recent observations with the Green Bank Telescope detect maser lines and both
narrow (0.35 km s�1) and broad (30–50 km s�1) methanol emission from the CNR
[252]. This has been interpreted as a signature of massive star formation in its early
phases. In the following sections (Sects. 6.3 and 6.4), we will see that the CNR may
have a crucial role for the formation and for the secular evolution of the young stars
in the GC.

Furthermore, several hundreds solar masses of atomic gas (>300Mˇ) might
exist inside the CNR [88, 113].

2Liu and collaborators have found that they misplaced CS7–6 as CS347–6 in their paper (B.
Liu private communication). This has been fixed in Fig. 6.13 with respect to the original figure
published on ApJ. See Liu et al. (in preparation) for details.
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Finally, a number of giant molecular clouds are close to the GC [11, 15, 41, 42,
50, 94, 103, 104, 115, 157, 171, 195, 235–237, 242]. Two molecular clouds (the M–
0.02–0.07 and the M–0.13–0.08 cloud, [183, 223]) lie within 20 pc of the GC (see
Fig. 6.12). M–0.02–0.07 and M–0.13–0.08 have comparable masses (�5� 105 Mˇ,
[133]), and linear dimensions (10–15 pc). The centre of M–0.02–0.07 lies �7 pc
away from Sgr A� (projected distance). Morphological and kinematic evidence
shows that Sgr A East has expanded into M–0.02–0.07, compressing portions of
this cloud into a ‘curved ridge’ ([70, 107, 220], see Fig. 6.12). The centre of M–
0.13–0.08 lies �13 pc away from Sgr A� (projected distance). The cloud is highly
elongated. A finger-like structure extends from this cloud toward the Galactic
eastern direction, and apparently feeds the CNR [108, 185].

6.2.4 The G2 Cloud

In the last two years, there has been much excitement about G2: a faint dusty
object orbiting the SMBH with a very eccentric orbit (�0:98) and an extremely
small pericentre (� 200AU� 2000 Schwarzschild radii). The detection of G2 was
reported in 2012 [84], but the first VLT NIR images where G2 can be seen date back
to �2003. G2 immediately raised the expectations of the astrophysical community:
was this object going to be tidally disrupted by the SMBH? What is its nature?

The observation of a blue-shifted (�3000 km s�1) component in April 2013
indicated that a part of G2 had already passed pericentre (see Fig. 6.14). The bulk
of G2 transited at pericentre in Spring 2014, and was not completely disrupted
during its close-up with the SMBH: the object is still point-like (consistent with
the point-spread function), even if with a tail of disrupted material. Several authors
predicted an enhancement of the X-ray and near-infrared activity of the SMBH
in correspondence of G2 pericentre passage, but no significant event has yet been
observed [99].

G2 has been observed in L0 continuum (3:8 �m, mL0 � 14), in the Br-� line of
hydrogen recombination (Br-� luminosity � a few �1030 erg s�1, emission measure
�1057 cm�3), in Paschen-˛ (1.875�m) and Helium I (2.058�m). Its luminosity
has remained nearly constant (within a factor of two) since the first observations
[192, 243]. The L0 continuum emission (corresponding to a luminosity of �2 �
1033 erg s�1, [192, 243]) is consistent with the thermal emission of dust at �560 K
[60, 84–86]. The combination of line emission and NIR continuum indicates that the
cloud is composed mainly of ionized gas (�104 K) plus some amount of relatively
cool dust.

The orbit of G2 was traced back to �2003, thanks to archive VLT data, and
showed a three-dimensional velocity increase from 1200 km s�1 (in 2004, [84]) to
2200 km s�1 (in 2013, [86]), consistent with a pure Keplerian motion. The internal
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Fig. 6.14 Position-velocity diagram of G2, extracted from 2013 April SINFONI data set along
the orbit projected into the cube. This diagram is a co-add around the lines Br-� , Helium I, and
Paschen-˛. The yellow line delineates the L0-band based orbit, the white line the Br-� based one.
Figure 2 of [86]

velocity dispersion of �100 km s�1 [85] is another peculiar feature of the velocity
field of G2: this corresponds to the sound speed of gas with temperatures of the
order of a few million Kelvin.

The best-matching orbital parameters indicate that G2 is almost coplanar with
the early-type CW disc [86]: the orbit of the cloud is �20ı tilted with respect to the
most recent estimates of the CW disc orientation. Finally, one of the most peculiar
features of G2’s orbit is its very high eccentricity (e � 0:98, [85, 193]; while the
average eccentricity of stellar orbits in the CW disc is �0:3).

Pfuhl et al. [192] reported the analogy of G2 with another dusty object, the G1
cloud (already observed by Clénet et al. [40], Ghez et al. [80]). G1 transited at
periapsis in 2001–2002, was observed in Br-� line and in L0 (the same as G2),
and has approximately the same dust mass as G2. The eccentricity of G1 is lower
(�0:86) and the semimajor axis smaller (�0:36 arcsec instead of �1:05 arcsec), but
its appearance and behaviour are very similar to the ones of G2.

6.2.5 Does the Galactic Centre Host an Intermediate-Mass
Black Hole?

In this subsection, we discuss the possibility that the GC hosts one or more
intermediate-mass black holes (IMBHs, i.e. black holes with mass in the
102–105 Mˇ range). IMBHs have been invoked to explain various phenomena
that take place in the GC (such as the ejection of hypervelocity stars).
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The presence of an IMBH in the GC might be detected in a number of ways:

1. Reflex motion of the SMBH.
2. A IMBH-SMBH binary might be revealed by emission of gravitational waves

(GWs).
3. Stars can remain bound to the IMBH if its Hill sphere is larger than its

tidal disruption sphere; this condition is satisfied for SMBH–IMBH separations
greater than � 0:05mpc. The motion of a star bound to the IMBH would be the
superposition of a Keplerian ellipse around the SMBH and an additional periodic
component due to its motion around the IMBH; the latter would have a velocity
amplitude 0:110 times the IMBH orbital velocity and an orbital frequency from
several hours to a few years, potentially accessible to astrometric monitoring.

4. In favorable circumstances, a near encounter of the IMBH with a star unbound to
it could produce observable changes in the star’s orbit over month- or year-long
timescales.

5. Interactions with an IMBH may result in ejections of stars to unbound orbits.
A star ejected at �1000 km s�1 requires about 100 yr to move beyond 0.1 pc
implying a probability �0:2.N=104/ of observing an escaping star at any given
time in the GC region, where N is the number of ejected stars. Interestingly,
at least one S-star (S111) in the sample of [82] appears to be on an unbound
trajectory due to its large radial velocity.

In the following two subsections, we focus on points 1. and 2. of the above
enumeration.

6.2.5.1 Constraints on the Presence of IMBHs in the GC from Radio
Measurements

At present, the measurements of the proper motion of the radio source associated
with SgrA� are the strongest constraints about the presence of IMBHs in the
GC [101, 202]. In fact, the perturbations induced onto the SMBH by the nearly
Keplerian motion of an IMBH orbiting around it are expected to affect the proper
motion of SgrA�. In particular, [101] showed that the perturbations induced on the
proper motion of SgrA� by an IMBH with mass 103 � mIMBH=Mˇ � 104, moving
in a circular orbit with semi-major axis 103 � a=AU � 104, can be detected if
the proper motion of SgrA� is measured with an accuracy higher than �0:1mas.
On this basis, measurements of SgrA� proper motion, derived from Very Long
Baseline Array (VLBA) data [202], exclude the presence of IMBHs more massive
than �104 Mˇ with 103 � a=AU � 105.

6.2.5.2 Gravitational Wave Signatures of IMBHs in the GC

GWs emitted by an SMBH-IMBH binary in the GC are another possible obser-
vational feature of IMBHs. Since the frequency of GWs fGW is twice the orbital
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frequency of a binary, fGW � 10�4 Hz
�

mBH
4:3�103 Mˇ

�1=2 �
6�10�6 pc

a

�3=2
. Thus, an

SMBH-IMBH binary enters the frequency range of the future space-borne GW
interferometer eLISA [10] when a . 6 � 10�6 pc.

An alternative possible measurement of GWs emitted by an SMBH-IMBH binary
might come from pulsar timing, through the so-called pulsar timing array (PTA).
GWs are expected to alter the arrival times of pulses from radio pulsars. Thus,
observations of a correlated modulation in the time of arrivals of pulses from a
network of millisecond pulsars across the sky can be used to observe GWs [52].

Kocsis et al. [118] estimate that the maximum distance within which a PTA could
measure the GWs of an individual source with a timing precision ıt D 10 ns is

Dsource D 14 pc

�
mIMBH

103 Mˇ

� �
P

10 yr

�1=2 � fGW

10�8 Hz

�1=6
10 ns

ıt
; (6.6)

where P is the orbital period of the IMBH-SMBH binary.
Furthermore, the GW signal from a single source rises above the GW background

only when the distance between GW source and PTA is less than

Dbg D 9 pc

�
mIMBH

103 Mˇ

� �
P

10 yr

�1=2 � fGW

10�8 Hz

�11=6
: (6.7)

Thus, only millisecond pulsars with distance from the GC smaller than both
Dsource and Dbg can be used to detect GWs from an hypothetical SMBH-IMBH
binary. The GC is expected to host a rich population of pulsars [191], but their
detection is challenging because of the high column-density of free electrons toward
the GC. Thus, pulsars in the GC can be detected only in relatively high-frequency
bands (>10GHz). This, combined with the very high timing precision required,
implies that the aforementioned possible PTA measurement needs (at least) the
capabilities of the Square Kilometer Array (SKA, [128]). Since eLISA is planned
for launch in 2034 and SKA is expected to be built in 2018 (phase I) and in
the mid 2020s (phase II), the detection of GWs from a possible SMBH-IMBH
binary is still quite far-off. As an alternative, GWs from IMBHs in the GC may
be detected when they merge with other IMBHs, stellar-mass black holes or neutron
stars. Such mergers emit waves in the frequency range that will be observed by
forthcoming second-generation ground-based GW detectors (Advanced Ligo, [102],
and Advanced Virgo, [1]). On the other hand, the probability that such a merger
occurs in our GC in the next few years is extremely low (e.g. [149] and references
therein).
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6.3 The Formation of the Early-Type Stars

A molecular cloud close to the Galactic centre (GC) is tidally disrupted if its number
density does not exceed the Roche density

nRL � 107 cm�3
�

mBH

3 � 106 Mˇ

� �pc

r

�3
; (6.8)

where mBH is the mass of the SMBH and r the distance of the molecular cloud
from the SMBH. Since the density of molecular cloud cores is generally much
lower (�104�6 cm�3), molecular clouds are expected to be quickly disrupted when
approaching the central SMBH by less than a few parsecs. Thus, the early-type stars
inside the central parsec cannot have formed in situ from a ‘typical’ molecular cloud
[194, 209]. And yet, given their young age, they cannot have migrated from larger
distances by standard dynamical friction.

Various scenarios have been proposed to solve the ‘paradox of youth’ and to
explain the formation of the early-type stars that orbit within the central parsec.
These scenarios can be divided in the following two families: (a) ‘in situ’ formation
models, which assume local star formation by some non standard process, and the
(b) migration models, which assume formation at larger distances from the SMBH
followed by fast migration to their current location.

The inspiral and destruction of a star cluster (Sect. 6.3.3) belongs to the latter
family, together with the tidal breakup of stellar binaries (Sect. 6.3.4), while
the fragmentation of the outer regions of an accretion disc (Sect. 6.3.1) and the
disruption of a molecular cloud (Sect. 6.3.2) are the most likely ‘in situ’ formation
pathways.

6.3.1 Fragmentation of the Accretion Disc

Keplerian accretion discs around SMBHs may become gravitationally unstable to
fragmentation and collapse to form stars [43–45, 68, 89, 111, 119, 132, 179, 181,
182, 186, 222, 231].

In particular, the Toomre stability parameter for Keplerian rotation [232] is

Q D cs ˝

� G˙
D ˝2

2�G �

p
.1C �/; (6.9)

where cs is the sound speed, ˝ is the angular frequency, G is the gravity constant,
˙ and � are the surface density and the volume density of the disc, respectively.
In Eq. (6.9), we have taken ˙ D 2H �, where H is the half-disc thickness.
The equation of hydrostatic equilibrium writes as cs D ˝ H

p
.1C �/, where

� � 4 �G �˝�2.
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The disc becomes unstable to fragmentation when Q � 1. This is expected to
occur at a radius

rQD1 � 1:2 pc

�
mBH

3 � 106 Mˇ

�1=3 �
�

2 � 10�17 g cm�3

��1=3
; (6.10)

where we approximated˝2 D G mBH r�3 and � D 0.
Following [44], the condition necessary for the collapse of a fragment is that the

time scale for star formation (tSF) and the cooling time (tcool) be shorter than the
characteristic mass transport time in the disc (ttrans).

According to [240], tSF D ˝�1 Q=
p
1 � Q2. Provided that Q is not too close

to 1,

tSF � ˝�1 D 3 � 1011 s .mBH=3 � 106 Mˇ/�1=2 .r=pc/3=2: (6.11)

For a gravitationally heated disc at nearly solar metallicity,

tcool � 8 � �H3

3 PM D 8 � 109 s

�
�

2 � 10�17 g cm�3

� �
H

0:01 pc

�3 �
10�2 Mˇ yr�1

PM
�

(6.12)

Finally, the mass transport time is

ttrans � 2� r2 �H
PM D 6� 1013 s

�
r

pc

�2 �
�

2� 10�17 g cm�3

� �
H

0:01 pc

� �
10�2 Mˇ yr�1

PM
�
:

(6.13)

For a wide range of accretion disc parameters, tSF and tcool are shorter than ttrans.
Thus, not only stars are expected to form in the outer parts of accretion discs, but
star formation may be sufficiently vigorous to quench accretion and destroy the
accretion disc. Thus, recent studies searched for mechanisms that can efficiently
transfer angular momentum in the accretion disc, to keep feeding the SMBH. Collin
and Zahn [45] find that gas accretion onto the SMBH is still possible (even if
moderate star formation takes place in the accretion disc), provided that supernovae
and/or clump collisions enhance the angular momentum transfer.

Nayakshin [181] find that, if star formation takes place in a marginally stable
accretion disc, the protostars heat up and thicken the accretion disc, preventing
further fragmentation. This occurs because the accretion luminosity of the pro-
tostars exceeds the disc radiative cooling, heating and puffing the disc up. While
stellar feedback stops further fragmentation, mass accretion on the already formed
protostars continues very efficiently, producing a top-heavy MF. Nayakshin et al.
[182] confirm these findings by means of N-body/smoothed particle hydrodynamics
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Fig. 6.15 Snapshot of the disc column density at time t D 75 (in N-body units) for run S2 of
[182]. In this N-body/SPH simulation, stars form as sink particles from an accretion disc. The left-
hand panel shows the full simulation domain, whereas the right-hand one zooms in on a region of
the disc centred at x D 1:8. Stars with masses greater than 3Mˇ are plotted as the red asterisks.
From Fig. 2 of [182]

(SPH) simulations of an accretion disc (see Fig. 6.15). Despite a number of severe
approximations (e.g. a constant cooling time, and the usage of sink particles to
model star formation without resolving gas fragmentation directly), this is the first
self-consistent simulation of an accretion disc showing that (a) the thermal feedback
associated with gas accretion on to protostars slows down disc fragmentation, (b) the
initial MF (IMF) of the stars may be considerably top-heavy with respect to Salpeter
IMF [207].

So far, the main issues of the accretion-disc-fragmentation scenario are (a) if the
orbits of gas particles in the accretion disc are tidally circularised by viscosity, the
orbits of the newly born stars are circular too, and cannot reproduce the observed
eccentricity distribution in the GC ([49]; on the other hand, this issue may be
overcome by starting with an eccentric accretion disc and by imposing that it forms
stars before tidal circularisation, [4, 182]); (b) the newly born stellar disc is expected
to be very thin, much thinner (and with smaller individual inclinations) than the
observed disc of early-type stars in the GC (e.g. [49]); (c) the MW SMBH is
currently quiescent and there is no evidence of an accretion disc: which mechanisms
induced the formation of an accretion disc and then destroyed it a few Myrs since
the formation of the stellar disc (e.g. [5])?
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6.3.2 Molecular Cloud Disruption

A molecular cloud is disrupted well before reaching the inner parsec. This was the
main argument against the in situ formation of the early-type stars in the GC. On the
other hand, star formation may take place even within a disrupted molecular cloud.
The two necessary requirements for a disrupted molecular cloud to form stars in the
central parsec of the MW are (a) that the molecular cloud orbit has very low angular
momentum; (b) that the streamers of the disrupted cloud collide with each other and
are shocked.

The former requirement is necessary for the streamers to settle on a sufficiently
tight orbit (i.e. the initial pericentre of the cloud orbit must be .1 pc). The latter, i.e.
collisions between the filaments, is requested because collisions produce shocks,
which induce fast cooling and enhance the gas density by orders of magnitude. In
this way, the density of the post-shock streamers can overcome the threshold for
tidal disruption (Eq. (6.8)), and the densest gas clumps collapse into protostars. This
is the basic motivation of the pioneering study by Sanders [209] and of a number
of recent papers studying the disruption of a molecular cloud in the surroundings of
the GC, by means of N-body/SPH simulations [6, 7, 29, 109, 144, 148, 150].

The aforementioned papers describe simulations of the infall of one or more
molecular clouds toward Sgr A�. They consider different cloud masses (ranging
from �104 to �106 Mˇ), temperatures3 (ranging from �10 to �500K) and
thermodynamics (adiabatic gas, isothermal gas or radiative cooling).

In all the simulations, the cloud is disrupted by the tidal forces of the SMBH and
spirals towards it. In less than 105 yr, more than one tenth of the gas in the parent
cloud ends up in a dense and distorted disc around the SMBH, with a small outer
radius (�0:5 pc, see e.g. Fig. 6.16). If the angular momentum of the cloud orbit is
low, the resulting gaseous disc is eccentric, consistently with the observations of the
stellar orbits in the CW disc. Locally, the surface density of the gaseous disc may
overcome the tidal shear from the SMBH and fragmentation may take place.

Among the aforementioned papers, the simulations presented in [150] are the
first attempt to trace the fragmentation of the gas disc, without adopting the sink
particle technique. The star candidates formed in these simulations are distributed
in a thin ring at a distance of �0:1–0:4 pc from the SMBH. They have eccentric
orbits (0:2 � e � 0:4), with average eccentricity hei D 0:29 ˙ 0:04 (Fig. 6.17).
Both the semi-major axis and the eccentricity distribution are in agreement with the
properties of the observed CW disc (e.g. Fig. 6.8).

Both [29, 150] agree that, if the parent molecular cloud is sufficiently massive
(1:3 � 105 Mˇ), the total mass of simulated star candidates (2–5 � 103 Mˇ) is
consistent with the estimated mass of the CW disc (e.g. [20, 187]; but see [143]
for a slightly different estimate).

3Many temperature components have been observed in the GC, ranging from �20 to �200K, and
the temperature distribution is highly non-uniform (e.g. [103, 104, 135, 157, 173]).



232 M. Mapelli and A. Gualandris

Fig. 6.16 Density map of the gas in run E of [150] at t D 4:8 � 105 yr. Simulation of a 1:3 �
105 Mˇ molecular cloud, disrupted by a 3:5 � 106 Mˇ SMBH. The simulation is projected in the
plane where the gaseous disc (at the centre) is seen face-on. The box measures 20 pc per edge.
The simulation has been run with the N-body/SPH code GASOLINE [239] and includes radiative
cooling [27, 28]. The colour-coded map is logarithmic and ranges from 1:5 � 10�22 to 1:5 �
10�12 g cm�3. From [92]

Furthermore, if the minimum temperature (i.e. the temperature floor due to
diffuse radiation in the GC) is sufficiently high (T � 100K), the MF of stellar
candidates is top-heavy (fitted by a single power-law with ˛ � 1:5 in the case
of [150], Fig. 6.17), in good agreement with the recent measurements by Lu et al.
(2013, see Fig. 6.9). The main reason is that a higher gas temperature corresponds
to a higher Jeans mass (mJ / T3=2, [114]).

All the papers that simulate the infall of a molecular cloud towards the GC
(e.g. [6, 29, 109, 148]) agree on the general picture. However, there are significant
differences between these papers, both in the initial conditions and in some of the
results.

As to the initial conditions, [29, 148, 150] adopt models of gas clouds that
are turbulently supported, while [6, 109] consider a simplified model of spherical
and homogeneous cloud. The simulations reported in [148] are isothermal, with
TMC D 10K (likely too low, if compared to the background radiation field
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Fig. 6.17 Left-hand panel: eccentricity e versus semi-major axis a at t D 4:8� 105 yr in run E of
[150] (the same as in Fig. 6.16). The marginal histograms show the distribution of a (top histogram)
and e (right-hand histogram). Right-hand panel: stellar MF in run E of [150] at t D 4:8 � 105 yr
(hatched red histogram). x�axis: star mass M�. y�axis: number of stars per mass bin N.M�/.
Solid (dotted) black thin line: MF dN=dm / m�˛ with ˛ D 1:5 (˛ D 2:35). From [150]

Table 6.1 Main differences in the initial conditions of simulations of molecular cloud disruption

Paper Cloud model TMC (K) Gas treatment Sink particles

[29] Turbulence supported 100 Radiative cooling Yes

[148] Turbulence supported 10 Isothermal Yes

[109] Homogeneous sphere 20 Simplified cooling Yes

[6] Homogeneous sphere 50 Both isothermal and No

Radiative cooling

[150] Turbulence supported 100, 500 Both isothermal and No

Radiative cooling

[144] Turbulence supported 100 Radiative cooling Yes

in the GC). The simulations in [29] include an approximate radiative transfer
formalism, with compressional heating balanced by cooling rates derived from
estimated optical depths. In [109], the simulations include a very simplified model
of cooling, and the initial temperature of the cloud is low (TMC D 20K). In
[6, 150], the simulations include different thermodynamical treatments for the gas,
considering both isothermal and radiative cooling cases. The floor temperature for
the simulations with radiative cooling is set to be 50 K in [6] and 100 K in both
[29, 150]. Alig et al. [6] stop their simulation before fragmentation takes place in
the disc, whereas the other considered papers study the formation of star candidates
in the disc. Mapelli et al. [148], Bonnell and Rice [29] and Hobbs and Nayakshin
[109] adopt the sink particle technique, to model SF. Only Mapelli et al. [150] follow
the initial fragmentation of the disc. Table 6.1 is a summary of the differences in the
initial conditions of the aforementioned simulations.
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Fig. 6.18 Column densities for run I10 of [144] in the xz and yz planes at the simulation’s end
at t D 3:113 � 104 yr. In this simulation, a prolate molecular cloud, oriented perpendicular to its
orbital plane, is disrupted by a SMBH. The white circles mark the position of sink particles. The
streamers are oriented 17ı out of plane from the disc, resulting in two stellar systems separated by
this angle. From Fig. 13 of [144]

The main differences among the results of these papers are about the formation
of star candidates, and especially about the MF. The MF in [109] is quite bottom-
heavy, because of the approximations in the cooling recipes and because of the
absence of opacity prescriptions.

Bonnell and Rice [29] adopt a very conservative value of the critical density for
converting gaseous particles into sink particles (D 1014 Mˇ pc�3 D 1:6�1015 cm�3,
assuming molecular weight � D 2:46), well above the critical tidal density.
Therefore, their MF is consistent with that predicted by the Jeans mass for the
local density and temperature of the clouds. Similarly, the MFs derived in [150]
are consistent with the predictions from Jeans mass and Toomre instability.

On the other hand, [150] do not observe the formation of the very massive stars
(>60Mˇ) that were found in the massive cloud simulated by Bonnell and Rice [29].
The MF in [150] is consistent with a single power-law with index ˛ � 1:5, whereas
that in [29] is clearly bimodal, showing two distinct stellar populations (see Fig. 4
of [29]). The very massive stars in [29] are all formed at r � 0:02 pc, where massive
stars have not been observed in the MW (the observed ring of young stars having
an inner radius of �0:04 pc). In [150], star candidates do not form at r < 0:05 pc,
because the shear from the SMBH prevents local collapse. This difference is likely
due to the different orbits of the parent clouds, to the different initial densities and
to the different recipes for opacity.

Recently, [144] showed that the disruption of a single prolate cloud, oriented
perpendicular to its orbital plane, produces a spread in angular momenta of gas
particles, and leads to the formation of stars with slightly misaligned orbital planes
(see Fig. 6.18). This matches the observations, which indicate that the early-type
stars in the CW disc have different orbital inclinations. On the other hand, we
will show in Sect. 6.4 that the misalignment of orbits can be the result of various
dynamical processes, taking place after the formation of the first disc.
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Fig. 6.19 Schematic diagram of a cloud engulfing Sgr A�, from Fig. 1 of [241]. The left-hand
panel indicates the gravitational focusing of incoming molecular cloud material (incident from the
left). The right-hand panel shows the carved-out inner region of the cloud that has been captured
by Sgr A� and circularised to form a disc. The outer region of the cloud continues its motion in
the direction away from Sgr A�

The main problem with the disruption scenario is the fact that the molecular
cloud must have a very low angular momentum. In fact, shock-induced radiative
cooling reduces the orbital energy of the cloud rather than its angular momentum.
Therefore, the initial mean angular momentum per unit mass of the cloud (� b v,
where b is the impact parameter and v the initial velocity of the cloud centre of
mass) is nearly preserved during the disruption of the cloud and the settling of the
disc. Thus, the radius of the formed gas disc Rd will be approximately [241]:

Rd

�
G mBH

Rd

�1=2
� b v: (6.14)

Adopting mBH D 3:5 � 106 Mˇ and Rd � 1 pc, we obtain b . 1 pc v�1
100 (with

v D v100 100 km s�1).
This argument does not hold if a molecular cloud engulfs Sgr A� during its

passage through the GC, and it is partially captured by the SMBH (see Fig. 6.19).
The partial capture of a portion of the molecular cloud is enhanced by gravitational
focusing. Fluid elements passing on opposite sides of Sgr A� have oppositely
directed orbital angular momenta, so that the collision between them leads to a
partial cancellation of the specific angular momentum. The efficiency of angular
momentum cancellation depends on the density and velocity inhomogeneities in the
gas.

An alternative solution to the angular momentum problem is to assume that two
molecular clouds collided a few parsecs away from Sgr A�, lost part of their angular
momentum during the collision, and fell towards the SMBH with a very small
impact parameter. According to this scenario, [109] simulate the collision between
two spherical clouds and the disruption of the collision product by a SMBH. Their
N-body/SPH simulations reproduce many interesting features of the observed early-
type stars in the GC, such as the presence of stars with high orbital inclinations with
respect to the main disc (see Fig. 6.20). Other studies (e.g. [150]) simulate clouds
with very low initial angular momentum, assuming that this was the result of a
previous collision between two different clouds.
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Fig. 6.20 Gas surface density and star locations (in the bottom right-hand panel) for snapshots
from simulation S1 of [109] taken at times t D 0; 100; 250 and 1000 (in N-body units), left to
right and top to bottom, respectively. Sgr A� is located at .0; 0/, and the line of sight is along the
z�direction. This simulation follows the collision of two molecular clouds and the infall of the
collision product toward the GC. Figure 1 of [109]

Finally, [7] propose that the young stellar disc is the result of the collision
between a molecular cloud and the CNR (see Sect. 6.2.3 for a description of the
observed properties of the CNR). The N-body/SPH simulations described in [7]
show that the collision between a molecular cloud and the CNR leads to multiple
streams of gas flowing toward the SMBH. This simulation shows that more than a
single disc can be formed through this pathway.
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6.3.3 Star Cluster Disruption

Star formation from standard collapse can proceed outside the central parsec and
lead to the formation of young star clusters like the Arches and the Quintuplet,
which then inspiral due to dynamical friction and deposit stars while being tidally
disrupted [76]. A dissolving cluster would lead to the formation of a stellar disc
similar to the CW disc, possibly accompanied by a number of isolated outliers. It
would also preferentially deposit massive stars close to the SMBH, as these would
form a compact core and survive tidal effects down to smaller separations than low-
mass stars. However, a cluster would need to be very dense and massive to be able
to inspiral within the lifetime of its massive stars [116].

The inspiral would be accelerated by the presence of an IMBH in the centre of
the cluster, if this was as massive as 10 % of the cluster mass [117]. Formation of
IMBHs has been predicted from a number of N-body simulations. The simulations
indicate that a runaway sequence of mergers of massive stars leads to the formation
of a very massive object which is assumed to eventually collapse [198]. The
evolution of such a very massive star, however, is not well known, and it has been
argued that collapse to an IMBH might be prevented by severe mass-loss in the form
of stellar winds [249].

Another potential difficulty of this model is that an inspiralling cluster would
deposit stars all along its orbit while being stretched and tidally disrupted. While
young stars have been observed outside the central 0:5 pc [32], the required number
of young stars is much larger than what currently inferred from observations [190].

Fujii et al. [66] perform self-consistent simulations of the inspiral of a star cluster
in its parent galaxy and find that the inspiral time is somewhat shorter than expected
by simple application of Chandraskhar’s dynamical friction formula [35], especially
if the cluster undergoes core collapse. In addition, an eccentric orbit for the star
cluster leads to a faster inspiral than a circular orbit, mitigating the requirements on
cluster density for survival down to small separations. Snapshots from simulations
of both a circular and an eccentric orbit are shown in Fig. 6.21. In these simulations,
the clusters are positioned at an initial distance of either 2 or 5 parsecs, and no stars
are found at distances smaller than 0.5 pc at the end of the integration.

A further speed up of the inspiral is found in simulations in which the star cluster
forms an IMBH in its centre in the early stages of evolution [67]. In this case, the
cluster can deposit massive stars in a disc configuration around the IMBH. Further
evolution can quickly randomise the orbital configuration and lead to an isotropic
distribution ([159], see Sect. 6.4.5 for details), in agreement with observations of the
S-stars. However, for this to happen within the lifetime of the young stars, the cluster
needs to be dense and massive and on a very eccentric orbit. While an IMBH of a
few thousand solar masses is sufficient for the purpose of randomising the orbits of
the bound stars, the simulated cluster in the models of [67] forms an IMBH which
is more massive than the currently accepted upper limit for a secondary black hole
in the GC [202].
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Fig. 6.21 Snapshots from the simulations of Fujii et al. (2008, Fig. 6.2) of the inspiral of a star
cluster in the case of a circular orbit (top panels) and an eccentric orbit (bottom panel)
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Fig. 6.22 Example of an
encounter between a stellar
binary and the SMBH in
which the binary is broken
apart; one star is ejected
while the other is captured by
the SMBH into a bound orbit.
Distances are expressed in
units of the initial binary
separation

6.3.4 The Binary Breakup Scenario

Another formation scenario that involves migration from outside the central parsec
is the breakup of stellar binaries scattered onto low angular momentum orbits by
relaxation processes. A binary scattered to pass very close to the SMBH is likely
to undergo an exchange interaction in which one of the stars is ejected to large
distances while the other is captured by the SMBH in a wide and eccentric orbit
(see Fig. 6.22).

Theoretically, a binary is expected to be disrupted when it reaches a distance of
the order of its tidal radius:

rt '
�

mBH

Mb

�1=3
ab ; (6.15)

where Mb represents the binary mass and ab its semi-major axis. Simulations show
that most binaries approaching the SMBH within the tidal radius are actually
disrupted [30, 105, 106]. The mean semi-major axis of the captured star is [105]

haci ' 0:56

�
mBH

Mb

�2=3
ab ' 0:56

�
mBH

Mb

�1=3
rt : (6.16)

This relation shows that harder stellar binaries (i.e. binaries with binding energy
larger than average) tend to produce more tightly bound captured stars, and provides
a direct mapping between the distribution of semi-major axes of incoming binaries
and bound stars. Because the pericentre distance of the captured stars is at the binary
tidal radius, the eccentricity is quite high [105, 169]

e ' 1 � rt=ac ' 1 � 1:78
�

Mb

mBH

�1=3
' 0:97 (6.17)
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for stellar binaries interacting with the MW SMBH. This is larger than what is
derived for any star in the S-cluster and may lead to the conclusion that the
binary breakup scenario is inconsistent with the observed properties of the S-stars.
Relaxation processes, however, are able to alter the orbital eccentricities of the
bound population over the lifetime of the stars, bringing the eccentricity distribution
in agreement with the observed one (see Sect. 6.4.3 for a discussion).

Antonini et al. [12] study the dynamics of main-sequence binaries on highly
elliptical bound orbits with small pericentre distances. They find that bound stars can
also be produced when the binary components merge. A coalescence remnant is not
able to escape the SMBH gravitational potential if the initial binary is bound to the
SMBH unless significant mass loss occurs. The probability for collisions between
the components of the binary increases with time, resulting in substantially larger
numbers of mergers when allowing for multiple pericentre passages.

Ejection velocities for the unbound star can be large enough to explain the
population of hypervelocity stars (HVSs) [31] in the halo of the Galaxy. In this
model, the HVSs are the former binary companions to the S-stars [87].

In addition to an efficient mechanism to thermalise the eccentricities within the
lifetime of the stars, in order to be viable the binary breakup model requires a
continuous reservoir of binaries at large radii, as well as a mechanism to scatter
the binaries onto plunging orbits. Scattering by massive perturbers like star clusters
and molecular clouds has been suggested to dominate over two-body relaxation
in the central 100 pc of the Galaxy [188]. Massive perturbers do not significantly
contribute to the disruption rate of single stars by the SMBH, but they may
enhance the tidal disruption rate of binaries by a factor 10–1000, depending on their
distribution.

6.4 Evolution of the Early-Type Stars

The different models described in Sect. 6.3 for the origin of the young stars predict
different distributions for the orbital elements:

• Stars formed from the disruption of a molecular cloud are expected to lie in a
disc and have moderate eccentricities (0:2 . e . 0:5).

• Stars formed from the tidal breakup of stellar binaries are naturally found in an
isotropic configuration and with very large eccentricities (e & 0:97).

• Stars deposited by an inspiralling star cluster with an IMBH in the centre will
have distributions of semi-major axes and eccentricities centred on the orbital
elements of the IMBH, and will also be orbiting in a plane.

It is interesting to note that none of the suggested models predicts a roughly
thermal distribution of eccentricities N.< e/ � e2, as is observed for the S-stars. The
predicted distributions, however, cannot be compared directly with observations,
because they evolve during the lifetime of the stars due to relaxation processes and
external perturbations. We review these processes in this section.
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6.4.1 Secular Processes: Precession and Kozai Cycles

The motion of a star inside the SMBH sphere of influence can be described as the
motion of a test particle in a Keplerian potential (due to the SMBH), perturbed by an
external potential. The sources of the external potential may be the spherical cusp
of old stars, a stellar disc, a gaseous disc, the circumnuclear ring, a molecular cloud,
an IMBH or whatever other perturber is sufficiently massive and sufficiently close
to the GC.

Precession is one of the main effects that are induced by the external potential.
Precession effects have been invoked to explain the formation of the S-star cluster
(e.g. [112, 138, 139]) and the broad distribution of angular momentum vectors
of the orbits of early-type stars [97, 98, 151, 224]. The strength and the effects
of precession depend on the nature of the potential. In particular, the precession
induced by a spherically symmetric potential (e.g. the spherical stellar cusp of old
stars) is very different from that induced by either an axisymmetric potential (e.g
another stellar disc, a gaseous disc/ring) or a single massive object (e.g. an IMBH)
orbiting the SMBH. In this section, we briefly describe the precession effects that
may affect the early-type stars in the GC, and give an estimate of the corresponding
timescales.

The orbit of a star in a Keplerian potential dominated by the SMBH mass is an
ellipse described by semi-major axis a and eccentricity e. The orientation of the
orbital plane in space is defined by two angles: the inclination i with respect to
an (arbitrarily chosen) reference plane and the longitude of the ascending node ˝ ,
with respect to the same plane and to an arbitrarily selected direction in this plane,
called direction of the � point. The argument of pericentre (angle !) describes the
orientation of the orbit within its plane. Finally, the true anomaly  describes the
actual position of the star on the orbit. Precession may affect both ˝ and ! or just
one of them, depending on the nature of the external potential.

A spherical stellar cusp induces a precession only on the argument of pericentre
(!), because the potential is spherical and all non-spherical effects cancel out. The
main effect of this precession is pericentre advance (e.g. [225]).

The orbits of disc stars precess on a timescale [92, 112, 138, 139]

Tcusp D mBH

Mcusp
Torb f .e/; (6.18)

where mBH is the mass of the SMBH, Torb is the orbital period of a disc star, Mcusp

is the mass of the cusp inside the stellar orbit, and f .e/ D 1Cp
1�e2p
1�e2

is a function of
the eccentricity e of a disc star. Precession due to a spherical mass distribution, also
called mass precession, is retrograde, i.e. in the opposite sense to orbital motion. In
the limit of e ! 1, mass precession becomes unimportant.
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In an axisymmetric potential, corresponding to a disc (e.g., a stellar ring or
a gas disc or the circumnuclear ring), a star orbiting a SMBH of mass mBH with
semi-major axis a, at an inclination i relative to a disc of radius RDISC and mass
MDISC precesses on a timescale [138, 180, 224]:

TK � mBH

MDISC

R3DISC

a3=2
p

G mBH
: (6.19)

In this case, the equations of motion for mean orbital elements read ([224], see also
[122, 131])

TK

p
1 � e2

de

dt
D 15

8
e .1 � e2/ sin 2 ! sin2 i; (6.20)

TK

p
1 � e2

di

dt
D �15

8
e2 sin 2 ! sin i cos i; (6.21)

TK

p
1 � e2

d!

dt
D 3

4

˚
2 � 2 e2 C 5 sin2 !



e2 � sin2 i

��
; (6.22)

TK

p
1 � e2

d˝

dt
D �3

4
cos i



1 C 4 e2 � 5 e2 cos2 !

�
: (6.23)

Energy conservation implies that a is approximately constant.
If i D 0 (i.e. the star is coplanar with the disc generating the external potential),

then only the longitude of the node˝ and the argument of pericentre! are affected,
as all the terms / sin i cancel out. Furthermore, any precession of˝ does not affect
the other properties of the orbit, as the plane of the stellar orbit and the plane of the
perturbing disc coincide.

If 0 < i < 90ı, then all four quantities (e, i, ! and ˝) are expected to change.
Finally, if i D 90ı, only e and ! are expected to change, as an effect of the
perturbation.

It can be shown that the change of both eccentricity and inclination with time is
periodic, describing the so called ‘Kozai cycles’ [122]. The change in eccentricity
during each ‘Kozai cycle’ is particularly large if the initial inclination i is high.

If the axisymmetric potential is not the only potential that perturbs the stars, but
it combines with a spherical cusp, then things change significantly. The spherical
cusp enhances the change in the argument of pericentre. In presence of the spherical
cusp, Eq. (6.22) can be rewritten as [112]

TK

p
1 � e2

d!

dt
D 3

4

˚
2 � 2 e2 C 5 sin2 !



e2 � sin2 i

��
.1� �/�1: (6.24)
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The term � is due to the spherical cusp, and can be expressed as [112]

� D Q�
�

TK

Torb

� �
Mcusp.< a/

mBH

�
; (6.25)

where Q� is a numeric constant (whose value depends on the shape of the spherical
cusp) and Mcusp.< a/ is the total mass of stars inside a sphere of radius a (i.e. equal
to the semi-major axis of the orbit of the considered star).

It can be shown [112] that if � is above a certain threshold (i.e. if the spherical
cusp is particularly massive with respect to the other involved quantities), then Kozai
oscillations are dramatically damped. Thus, the value of the eccentricity remains
very close to the initial value.

If Mcusp > 0:1MDISC, the only remaining effect of the gravitational influence of
the perturbing disc on the stellar orbits is the precession of the ascending node with
frequency [224]

d˝

dt
D �3

4
cos i

1 C 3
2

e2p
e2

T�1
K : (6.26)

From Eq. (6.26), it is apparent that the precession of the ascending node depends
on the semi-major axis of the stellar orbit ( d˝

dt / T�1
K / a3=2). In particular, stars

with larger a will precess faster than stars with smaller a. This is very important for
the early-type stars that form the CW disc around Sgr A�, for the following reason.
If i D 0, this precession has no effect on the inclination of the stellar orbits, as the
plane of the perturbing disc and the plane of the star orbit are the same. Instead, if
i > 0, the orbits of the outer stars will become inclined with respect to the orbits of
the inner stars, producing a warp in the stellar disc, and increasing its thickness.

Figure 6.23 shows a comparison of the relevant precession timescales in the case
of our GC.

6.4.2 Relativistic Effects

According to general relativity, the SMBH itself is a source of precession for the
stellar orbits. In the case of a non-rotating black hole, a star orbiting the SMBH
experiences an advance of the orbital periapse by an angle

ı!S D 6�

c2
GmBH

a.1 � e2/
; (6.27)

which depends on the mass of the SMBH and the orbital elements of the star.
This apsidal precession (also called geodetic, de Sitter, relativistic or Schwarzschild
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Fig. 6.23 Comparison of the relevant timescales as a function of the semi-major axis a (see
Sects. 6.4.1 and 6.4.2 for details). Solid black line: TK (Eq. (6.19), for mBH D 4:3 � 106 Mˇ,
MDISC D 105 Mˇ and RDISC D 2 pc); dotted red line: Tcusp (Eq. (6.18), for mBH D 4:3� 106 Mˇ,
e D 0 and Mcusp derived from Eq. (6.2)); dashed blue line: Torb (orbital period); dot-dashed
green line: TQ (Eq. (6.34)); dot-dashed ochre line: TJ (Eq. (6.33)); dot-dashed magenta line: TS

(Eq. (6.28)). TS, TJ and TQ have been derived for mBH D 4:3 � 106 Mˇ and e D 0. � D 1 (i.e. a
maximally rotating SMBH) has been assumed for TJ and TQ

precession) is an in-plane prograde precession that operates on a time-scale (see
[90, 163]):

TS D �Torb

ı!S
D Torb c2

6

a.1 � e2/

GmBH

D 1:3 � 103 yr
�
1 � e2

	 � a

mpc

�5=2 �
4 � 106 Mˇ

mBH

�3=2
(6.28)

In the case of our GC, Schwarzschild precession is large enough to potentially be
detectable via �10 years’ monitoring of identified stars at .10mpc separations from
the SMBH [206], see also Fig. 6.23.

In the case of a rotating black hole, the coupling between the spin of the
SMBH and the orbital angular momentum of the stars leads to additional sources
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of precession, both in-plane and out-of plane. The spin and quadrupole moment
contributions to the in-plane precession are, respectively, [161]:

ı!J D �8�
c3
�

�
G mBH

a .1� e2/

�3=2
cos i (6.29)

ı!Q D �3
2

�

c4
�2
�

G mBH

a.1� e2/

�2
.1 � 3cos2i/ (6.30)

where � D J=.Gm2
BH=c2/ is the dimensionless spin parameter of the SMBH. The

contributions to the precession of the orbital plane are [161]:

ı˝J D 4�

c3
�

�
G mBH

a .1� e2/

�3=2
(6.31)

ı˝Q D �3�
c4
�2
�

G mBH

a .1� e2/

�2
cos i: (6.32)

Of these terms, only the quadrupole term is dependent on inclination. The associated
timescales are:

TJ D Torb

4�

�
c2 a .1 � e2/

G mBH

�3=2

D 1:4 � 105 yr
�
1 � e2

	3=2
��1

�
a

mpc

�3 �
4 � 106 Mˇ

mBH

�2
(6.33)

and

TQ D Torb

3�2

�
c2 a .1 � e2/

G mBH

�2

D 1:3 � 107 yr
�
1 � e2

	2
��2

�
a

mpc

�7=2 �
4 � 106 Mˇ

mBH

�5=2
: (6.34)

Detection of spin effects in the GC can in principle come from observations of plane
precession of stars in the inner mpc. However, gravitational interactions between
stars in this region are likely to induce orbital precession of the same approximate
amplitude as the precession due to frame dragging, hampering detection. Assum-
ing near-maximal spin for the Milky Way SMBH, detection of frame-dragging
precession may be feasible after a few years’ monitoring with an instrument like
GRAVITY [63] for orbits in the radial range 0:2–1mpc. At smaller radii the number
of stars is too small, while at larger radii the star-star and star-remnant perturbations
dominate over relativistic effects [161].
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6.4.3 Relaxation Processes: Two-Body Relaxation, Resonant
Relaxation

In an isotropic system, the angular momentum of the stars evolves both due to
the stochastic two-body relaxation (e.g. [24]) and to the resonant relaxation [200].
Nonresonant two-body relaxation operates on a timescale [24]

TNR D 0:34 �3

G2 m � ln�

� 1010 yr

�
�

200 km s�1

�3 �
106 Mˇ pc�3

�

��
Mˇ
m

��
15

ln�

�
(6.35)

where � is the stellar density, � is the one-dimensional velocity dispersion of the
stars, m is the mass of a single star, and ln�, the Coulomb logarithm, is a numerical
factor that corrects for the divergent force in a infinite homogeneous system. Over a
time TNR, gravitational encounters between stars act to change orbital energies and
angular momenta. In particular, angular momentum changes with time in a random
walk fashion.

Resonant relaxation occurs when the symmetries of the potential act to constrain
the stellar orbits (e.g. closed ellipses in a Kepler potential, or planar rosettes in a
spherical one). As long as the symmetry is approximately maintained, gravitational
interactions between stars are highly correlated and stars experience coherent
torques. The coherence timescale Tcoh (the time over which orbits can be considered
fixed), is the time associated with the most rapid source of precession of the stellar
orbits. Sources of precession (see also Sect. 6.4.1) are: mass precession, due to the
stellar mass distributed around the SMBH, relativistic precession and precession
due to resonant relaxation itself. The mass coherence time is always shorter than the
self-coherence time, but sufficiently close to the SMBH relativistic precession must
dominate.

For a time � t such that Torb � � t � Tcoh, the so called coherent resonant
relaxation is characterised by changes in the angular momentum of a star at a
roughly constant rate

dJ

dt
� p

N
G m

a
; (6.36)

where a is the star’s semi-major axis. The angular momentum change is

.�J=Jc/coh � p
N

G m

a

� tp
GmBHa

; (6.37)
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where Jc D p
G mBHa is the angular momentum of a circular orbit. The coherent

resonant relaxation timescale can be defined as the time for which �J D Jc

TRR;coh D Torb

2�

mBH

m

1p
N

� 1:5 � 104yr

�
a

mpc

�3=2 �
106 Mˇ

mBH

�1=2 �
10�6

m=mBH

��
103

N

�1=2
: (6.38)

On timescales longer than Tcoh, the field stars precess and the direction of
the torque exerted by the N stars changes (while its magnitude remains roughly
unchanged). Under the assumption that the direction of the torque is essentially
randomised after each Tcoh, the angular momentum of a test star undergoes a random
walk, with step size given by the product of the torque and the coherence time. The
evolution of the angular momentum in this incoherent resonant relaxation regime
is qualitatively similar to the evolution under nonresonant two body relaxation, but
can be significantly faster. This is due to the fact that the mean free path of the
random walk in J is set by the (large) change accumulated over Tcoh. The incoherent
resonant relaxation timescale is then defined by Eilon et al. (e.g. [61])

�J=Jc D .�J=Jc/coh

p
t=Tcoh � p

t=TRR; (6.39)

TRR D
�

Jc

�J

�2
coh

Tcoh: (6.40)

If the coherence time is determined by mass precession, then

TRR �
�mBH

m

�
Torb: (6.41)

If instead relativistic precession dominates,

TRR � 3

�2
rg

a

�mBH

m

�2 Torb

N
; (6.42)

where

rg D G mBH

c2
� 2 � 10�7

�
mBH

4:3 � 106 Mˇ

�
pc (6.43)

is the gravitational radius of the SMBH.
Merritt [164] estimates the distance from the SMBH at which incoherent resonant

relaxation becomes dominant over nonresonant two body relaxation. In the case of
a dynamically relaxed Bahcall-Wolf cusp [17] this distance is of about 0.06 pc, or
0:025rh, where rh represents the SMBH’s influence radius. In the case of a low-
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Fig. 6.24 Cumulative
distribution of eccentricities
for stars with initially low
(green) and high (red)
eccentricities, after 6 Myr
(dashed) and 20 Myr (solid)
of evolution in a relaxed cusp
of stars and remnants. The
distribution for the S-stars
from the sample of [82] is
shown for comparison, as is a
line giving the theoretical
thermal distribution. The
distribution predicted by the
binary breakup model is the
most consistent with the data.
Figure 2 of [189]
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density model for the innermost region of the NSC, resonant relaxation dominates
inside �0:18 pc � 0:1rh, somewhat further out than in the relaxed model.

Simulations by Perets et al. [189] show that perturbations from the compact
remnants tend to randomise stellar orbits in the GC, partially erasing the dynamical
signatures of their origin. The simulations follow the dynamical evolution of a
population of stars in the inner �0:3 pc of the Galaxy against a cusp of stars and
remnants. The initial conditions are based on the collisionally relaxed cusp of stars
and remnants by Hopman and Alexander [110], and intend to represent products of
both the in situ formation scenario and the tidal breakup scenario. The former tends
to produce stars with low to moderate eccentricities, while the latter leaves stars
bound to the SMBH on highly eccentric orbits. The eccentricities of the initially
highly eccentric stars evolve, in 20 Myr, to a distribution that is consistent with
the observed eccentricity distribution. In contrast, the eccentricities of the initially
more circular orbits fail to evolve to the observed values in 20 Myr, arguing against
the disc migration scenario. Figure 6.24 shows the final cumulative eccentricity
distribution of the stars for the two models under consideration and at two different
times: 6 and 20 Myrs. These times are chosen to represent the age of the current CW
disc and the canonical S-star lifespan. The binary breakup scenario after 20 Myr of
evolution is found to be the preferred model for the origin of the S-stars. In contrast,
the disc migration scenarios seem to be excluded (for the given assumptions),
since they have major difficulties in explaining the large fraction of eccentric orbits
observed for the S-stars in the GC.

Resonant relaxation against the stellar remnants acts to isotropise the inclination
distribution of the captured stars for all models, and can not therefore be used to
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discriminate between them. However, randomisation of the inclinations requires at
least 4 Myr when starting from a single plane configuration, and can be used to
constrain the lifetime of the S-stars in the in situ model.

Monte Carlo simulations by Antonini and Merritt [14] of the orbital evolution of
the S-stars show that the distribution of the semi-major axis a and eccentricity e of
the S-stars predicted by the binary disruption model is consistent with the observed
orbits even when relativistic effects are considered (see Sect. 6.4.2 for details). Even
though most of the orbits lie initially below the Schwarzschild Barrier (i.e. the locus
in the .a; e/ plane where resonant relaxation is ineffective at changing eccentricities,
[161]), orbits starting sufficiently close to the barrier are sometimes able to penetrate
it, diffusing above and reaching a nearly thermal eccentricity distribution. After
�20Myr of evolution the distributions are consistent with the observed ones, if a
dynamically relaxed model for the background stellar cusp is assumed. This result is
particularly interesting given that relaxed models of the GC are currently disfavored
by observations [32, 53] and by some theoretical arguments [13, 93, 160].

6.4.4 Impact of Relaxation and Precession on the Early-Type
Stars

Precession of the stellar orbits, due to either stellar perturbations or relativistic
effects, has a number of implications for the evolution of the early-type stars in
the GC. We here discuss the most relevant to constrain the formation scenarios
presented in the previous sections:

Dependence of Mean Orbital Eccentricity on Distance The resonant relaxation
timescale increases with distance from the SMBH (e.g. [110]). Therefore, stars
captured/formed further away from the SMBH are expected to have a less relaxed
eccentricity distribution than stars closer to the black hole [190]. As a result,
relaxation processes will give rise, over time, to a correlation between the distance
from the SMBH and the orbital eccentricity. Far from the SMBH, where the resonant
relaxation timescales are much longer than the typical lifetimes of the B-stars, stars
should retain their original eccentricity distribution, i.e., highly eccentric orbits for
captured stars after a binary disruption, and likely low eccentricity orbits for stars
formed in a stellar disc. Closer to the SMBH, on the other hand, captured stars
could have a relaxed (i.e. thermal) eccentricity distribution even after short times.
These predictions have been confirmed by the simulations of [190], who find an
increase of the mean eccentricity of the stars with distance from the SMBH (see
Fig. 6.25). Therefore, the binary capture scenario provides a qualitatively unique
signature, in which the typical eccentricity is an increasing function of distance,
which can be tested against observations of the B-stars. However, stars with large
semi major axes have large orbital periods and it is difficult to determine their
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Fig. 6.25 Evolution of the
median eccentricity of a
population of B-stars in the
central 0.5 pc of the GC, for
different initial distances
from the SMBH. Relaxation
is driven by a cusp of
remnants distributed between
0.04 and 0.8 pc. Only stars
with initial eccentricity in the
range 0:95–0:99 are selected
to represent captured stars.
Figure 2 of [190]
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dynamical accelerations from astrometric data, from which orbital parameters are
derived. Madigan et al. [146] developed a statistical method which uses only
sky positions and proper motions to infer the orbital eccentricities of a stellar
population around the SMBH. They confirm the results by Perets and Gualandris
[190] regarding the binary disruption scenario that stellar orbits remain at very high
eccentricities outside �0:1 pc. Similarly, stars formed with small eccentricities, as in
the case of an in-situ formation from a dissolved disc, maintain small eccentricities
at large distances. Applying the statistics to a sample of B-stars at projected radii
�0:004–1 pc from the SMBH they find that stars with K-band magnitudes 14 .
mK . 15 (i.e masses of 15–20Mˇ and ages of 8–13Myr) match well to an in-situ
formation origin, while those with mK � 15 (corresponding to masses � 15Mˇ and
ages � 13Myr), if isotropically distributed, form a population that is more eccentric
than thermal, suggestive of a binary-disruption origin.

Thickness/Warping of the CW Disc As discussed in Sect. 6.2.2, recent observations
[20, 21, 54, 142, 143, 247] show that the opening angle of the CW disc is only
�10ı–14ı, but about half (or even �80%, [247]) of the early-type stars in the
inner 1–10 arcsec (0:04–0:4 pc) do not belong to the CW disc. Furthermore, the
probability of early-type stars being members of the CW disc decreases with
increasing projected distance from Sgr A� [20, 142]. Finally, the CW disc does not
seem a flat structure, but rather a significantly warped (�64ı, [20]) and tilted object
(but see [247] for a different result). Recent studies (e.g. [97, 98, 151, 224]) suggest a
reasonable interpretation for such observations: the precession exerted by a slightly
misaligned gas disc (or ring) enhances the inclinations of the outer stellar orbits with
respect to the inner stellar orbits. Thus, while the inner disc remains quite coherent,
the outer stellar orbits change angular momentum orientation till they may even lose
memory of their initial belonging to the same disc. The result is a tilted/warped disc,
which is being dismembered in its outer parts.
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Fig. 6.26 Angular momenta
of individual stars in the
young stellar disc after 6 Myr
of orbital evolution,
integrated through N-body
simulations [97]. The initial
state is denoted by an empty
circle. The plot is in
sinusoidal projection.
Latitude on the plots
corresponds to i while
longitude is related to ˝.
Only stars with mass
m > 12Mˇ are displayed.
From Fig. 2 of [97]
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The perturbing ring may be the CNR ([97, 98, 224], see4 Fig. 6.26) or a transient
gas ring that forms from the disruption of a low-angular momentum molecular cloud
[151].

Mapelli et al. [151] is the first study in which the gas perturber is represented by
‘live’ SPH particles, rather than by a rigid potential. In particular, [151] simulate the
perturbations exerted on a thin stellar disc (with outer radius �0:4 pc) by a molecular
cloud that falls towards the GC and is disrupted by the SMBH. The initial conditions
for the stellar disc were drawn from the results of previous simulations [150] of
molecular cloud infall and disruption in the SMBH potential. Mapelli et al. [151]
find that most of the gas from the disrupted molecular cloud settles into a dense and
irregular disc surrounding the SMBH (see Fig. 6.27). If the gas disc and the stellar
disc are slightly misaligned (�5–20ı), the precession of the stellar orbits induced by
the gas disc significantly increases the inclinations of the stellar orbits (by a factor
of �3–5 in 1.5 Myr) with respect to the normal vector to the disc. Furthermore, the
distribution of orbit inclinations becomes significantly broader (see Fig. 6.27).

Origin of the S-Cluster Löckmann et al. [138] propose that the orbits of the S-stars
are the result of precession and Kozai resonance due to the interaction between two
stellar discs. In this scenario, binary stars in the young stellar disc are first moved
to highly eccentric orbits by Kozai resonance with a second stellar disc and then
disrupted by the SMBH at pericentre, as in the binary breakup model. The inclusion
of a stellar cusp, however, has been shown to damp Kozai oscillations in the disc
([36, 139], see Fig. 6.28), which are a key factor in this scenario (see also [92], for a
discussion).

4The fiducial run reported in [97] includes 200 early-type stars (modelled as N-body particles),
a SMBH with mass mBH D 4 � 106 Mˇ (modelled as Keplerian potential), a CNR with mass
0:3mBH (modelled as a single particle), a stellar cusp with mass Mcusp D 0:03mBH (modelled as a
rigid potential).
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Fig. 6.27 Left-hand panel: projected density of gas in run B2 of [151] at t D 0:5; 0:75 and
1.5 Myr in the top, central and bottom panel, respectively. In this simulation a pre-existing stellar
disc is perturbed by the joint effect of the stellar cusp (modelled as a rigid potential) and of a
second molecular cloud (modelled as SPH particles) disrupted by the SMBH. The color map is
logarithmic, ranging from 2�10�2 to 2�1010 Mˇ pc�3 . The contours show the projected density
of stars in the stellar disc. The box size is 4:0 � 1:8 pc. The projection was chosen so that the
total angular momentum of the stellar disc is aligned to the vertical axis of the plot. The two white
arrows in the bottom panel show the direction of the total angular momentum of the stellar disc and
the total angular momentum of the outer gas disc. The length of the arrows is arbitrary. Figure 4 of
[151]. Right-hand panel: distribution of inclinations (� ) and semi-major axes (a) of the disc stars
at t D 1:5Myr in the top and bottom panel, respectively. From the N-body/SPH simulations of
[151]. Cross-hatched red histogram: simulation including a spherical cusp and a perturbing gas
disc (run B2); hatched black histogram: simulation with only a spherical cusp (run A2). From
Fig. 9 of [151]

Schwarzschild Barrier Relativistic precession limits the ability of torques from
the stellar potential to modify orbital angular momenta via resonant relaxation.
This results in a sort of barrier [162] in the .a; e/ plane which sets an effectively
maximum value of the eccentricity at each value of the semi-major axis (see
Fig. 6.29). The Schwarzschild Barrier inhibits extreme-mass-ratio-inspirals and
leads to capture rates that are �10–100 times lower than in the non-relativistic case.

Eccentric Disc Instability An eccentric stellar disc around the SMBH is expected
to exhibit an instability as a result of the eccentricity dependence of the mass
precession timescale (Eq. (6.18)). Retrograde precession due to the presence of a
stellar cusp induces coherent torques that amplify deviations of individual orbital
eccentricities from the average, and thus drives all eccentricities away from their
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Fig. 6.28 Eccentricity evolution of a test star undergoing Kozai resonance driven by a fictitious
1:5 � 104 Mˇ particle representing a disc potential. Both particles have initially circular orbits
about the 3:5�106 Mˇ SMBH with semi-major axes of 0.04 and 0.16 pc, respectively. Simulations
reported by Löckmann et al. [139]. Solid black line: models without cusp; dashed (dotted) line:
models with 1 % (5 %) of the extended cusp mass observed in the Galactic Centre (modelled as a
smooth potential). Each curve is accompanied by a corresponding thick green curve that represents
a respective integration including post-Newtonian (PN) terms up to 2.5 PN to account for the effects
of general relativity. While relativistic effects damp the Kozai effect at high eccentricities, a stellar
cusp with mass of a few per cent of the observed value is sufficient to damp any eccentricity growth
(dotted line). Figure 6 of [139]

initial value [145], producing a bimodal eccentricity distribution. Gualandris et al.
[92] study the evolution of the ring of stars formed in the GC from fragmentation
of the gas disc deposited by an inspiralling molecular cloud. The stars are subject
to the potential of the SMBH, a stellar cusp and the parent gas disc. While the ring
retains the original distribution of semi-major axes, and therefore also the initial
inner and outer radius, the distribution of eccentricities evolves in time due to the
onset of the eccentric disc instability. Torques exerted by other stars in the ring result
in a change in the magnitude of the angular momentum and, as a consequence,
in the eccentricity. As stars evolve away from the average eccentricity, a bimodal
distribution is established, with a primary peak at e � 0:1, a secondary peak at
e � 0:5 and a tail that extends to e � 0:7 (see Fig. 6.30). This is qualitatively
consistent with the distribution found for the CW disc stars [20].
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Fig. 6.29 Trajectories, over a time interval of 2 Myr, of stellar-mass black holes orbiting the
SMBH as they undergo gravitational encounters with each other. Dashed line: capture radius
around the SMBH; dotted line: the Schwarzschild barrier; dot-dashed line: locus in the a � e
plane where angular momentum loss due GW emission dominates over gravitational encounters.
From Fig. 5 of [162]

Fig. 6.30 (Left) eccentricity distribution of a ring stars at the start of the integration (filled area)
and after 6 Myr of evolution (hatched area), subject to the potential of the SMBH, a spherical
stellar cusp and the parent gas disc. Adapted from Fig. 5 of [92]. (Right) evidence for the eccentric
disc instability [145] in a random subset of stars in the simulation of [92]. The time-scale for the
process is about 1 Myr. Figure 6 of [92]



6 Star Formation and Dynamics in the Galactic Centre 255

6.4.5 Perturbations from an Intermediate-Mass Black Hole

In the cluster inspiral scenario with an IMBH, stars are naturally deposited in a disc
structure in the same plane as the IMBH orbit and with orbital elements similar to
those of the IMBH itself. The inspiral of the IMBH is expected to slow down or stall
completely at a distance �10.q=103/mpc from the SMBH, where q is the ratio of
IMBH to SMBH masses [22, 137, 156]; this distance is comparable to the sizes of
the S-star orbits if q � 103, i.e., if MIMBH � 103:5 Mˇ. At this separation, the total
binding energy in background stars within the IMBH orbit is comparable to that of
the IMBH itself and stars are easily ejected by the slingshot mechanism, thereby
causing the frictional force to drop.

The orbit of the IMBH is likely to be quite eccentric at this stage, depending
on the initial orbit of the cluster and the detailed history of interactions with the
stars [22, 156]. If the eccentricity is not so high (e . 0:99) that energy loss due to
emission of GWs results in coalescence in less than 108 years, the semi-major axis
of the IMBH orbit remains essentially unchanged for times comparable to the S-
stars main-sequence lifetimes. Prolonged gravitational interactions with the IMBH
can then scatter the young stars out of the thin disc into which they were originally
deposited [159]. Figure 6.31 shows the result of the simulations of [159] following
the evolution of a disc of stars around an IMBH with mass ratio of q D 0:001.
An initially planar configuration for the stars is quickly (�1 Myr) turned into an
isotropic configuration by perturbations from the IMBH. An eccentricity larger than
�0:2 is necessary for stellar inclinations to be excited.

The IMBH also induces evolution in the eccentricities and energies (semi-major
axes) of the stars. Eccentricities were found to tend toward a “thermal” distribution
on a timescale of about 0.1 Myr for q & 2:5 � 104, as illustrated in Fig. 6.32. The
final distribution of stellar semi-major axes depends on the assumed size of the
IMBH orbit, but stars with apastron distances as small as the periastron distance
of the IMBH are naturally produced. Therefore, tightly bound orbits like those of
the innermost S-stars, e.g., S2, require an IMBH orbit with a periastron distance of
about 10mpc.

If the cluster inspiral scenario with an IMBH is deemed otherwise viable, the
results of [159] show that the model can also naturally reproduce the random and
eccentric character of the stellar orbits, and all in a time that is less than stellar
evolutionary timescales—thus providing an essentially complete explanation for the
“paradox of youth” of the S-stars.

In order to avoid making the current epoch special, the IMBH inspiral rate needs
to be roughly equal to the inverse of the S-star lifetimes, i.e �107yr�1. Such a rate
has been proposed by Portegies Zwart [199] based on a semi-analytic model of the
formation and evolution of star clusters in the galactic bulge.

Gualandris and Merritt [90] study the short- and long-term effects of an IMBH
on the orbits of the S-stars, for different choices of IMBH parameters: mass, semi-
major axis, eccentricity, spatial orientation. On long timescales, perturbations from
an IMBH can result in: (a) randomization of the inclinations of the stars; (b) ejection
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Fig. 6.31 Initial (left) and final (right, after 1 Myr) orbits of stars in a simulation with IMBH
semi-major axis a D 15mpc, eccentricity e D 0:5, mass ratio q D 0:001. Top panels show the
view looking perpendicular to the IMBH orbital plane and bottom panels are from a vantage point
lying in this plane. The IMBH orbit is the heavy black curve in all panels; the unit of length is
milliparsecs. The initially disc-like, co-rotating distribution of stars is converted, after 1 Myr, into
an approximately isotropic distribution of orbits with a range of eccentricities, similar to what is
observed for the S-stars. Many of the orbits “flip” in response the perturbation from the IMBH, i.e.
their angular momentum vector changes by 180ı . Figure 1 of [159]

of stars from the region; (c) scattering of stars onto plunging orbits that result in
tidal disruption in the SMBH’s tidal field; and (d) secular effects like Kozai cycles.
When considering individual stars, stars with initially large eccentricities are the
most susceptible to perturbations.

The result on the distribution of orbital elements for the S-cluster depends on
the IMBH parameters. The distribution of S-star semi-major axes and eccentricities
are significantly altered from their currently observed form by IMBHs with masses
greater than �1000Mˇ if the IMBH–SMBH semi-major axis lies in the range
3–10mpc.
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Fig. 6.32 Evolution of the
distribution of stellar orbital
eccentricities in a set of
simulations with IMBH
orbital parameters
q D 5� 10�4, a D 15mpc,
e D 0:5. The initial
distribution (thick black line)
evolves in time (thin blue
lines). After 1 Myr, the
distribution (thick red line) is
consistent with a thermal
distribution (dashed line).
Open circles represent the
S-stars observed distribution
[82]. Figure 3 of [159]

These results can be used to constrain the allowed parameters of an IMBH–
SMBH binary at the Galactic centre. The region of parameter space corresponding
to masses &2000Mˇ and initial semi-major axes �2–10mpc can be excluded.
Such region is represented by the shaded box in Fig. 6.33. All shaded areas in the
figure mark regions of parameter space that can be excluded based on theoretical
or observational arguments. Interestingly, the IMBH parameters required for an
efficient randomization of inclinations [159] in the cluster infall scenario (MIMBH &
1500Mˇ for the simulated range of separations 10–50mpc—see rectangular box in
Fig. 6.33) are consistent with all the constraints placed so far.

Gualandris et al. [91] study short-term perturbations of an IMBH on star S2, [78,
211] whose short orbital period (P � 16 yr) and large eccentricity (e � 0:88) [82]
make it an ideal candidate to detect small deviations from a purely Keplerian orbit.
Deviations from a purely Keplerian orbit are expected for star S2 due to relativistic
and Newtonian precession (see Sect. 6.4.1). Their only observable effect is an in-
plane advance of the pericentre. None of the other classical elements are affected by
precession.

In the absence of spin effects, which would not anyway manifest themselves at
the distance of S2 [161], only non spherically symmetric perturbations like those
due to an IMBH are able to produce changes in the angular momentum of S2’s
orbit, leading to changes in eccentricity and the inclination of the orbital plane.
Perturbations due to the other S-stars have been shown to be negligible. Combining
N-body simulations with observational orbital fitting techniques, [91] find that
an IMBH more massive than �1000Mˇ at a distance of 1–5mpc is potentially
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VLBA

Fig. 6.33 Constraints on the orbital parameters of a hypothetical IMBH in the Galactic region. The
shaded areas represent regions of parameter space that can be excluded based on observational
or theoretical arguments. The dotted lines mark the distances at which the S-stars are currently
observed. The dashed line represents the five year orbital period corresponding to discoverable
systems. The parameters enclosed in the empty rectangular box are required for an efficient
randomization of inclinations in the cluster infall scenario [159]. The small rectangular region
just below the empty box represents the parameter space excluded by [90]. Adapted from Fig. 13
of [90]

discoverable at S2’s next pericentre passage in 2018. Evidence for an IMBH would
appear as significant deviations from the assumed point mass relativistic potential
in S2’s orbital fit.

6.5 Origin and Evolution of the G2 Cloud

In Sect. 6.2.4, we discussed the orbital properties of the dusty object G2. Several
models were proposed to explain the formation of G2. Despite this, the nature of the
G2 cloud remains unclear, because none of the proposed models accounts for all its
properties in a satisfactory way. The main open questions are (see [33]): (a) is G2
only a cloud or is there a compact source hidden inside the gas shell? (b) where did
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G2 come from? (c) why is the orbit so eccentric? (d) which are the processes that
affect G2 close to pericentre? (e) how many clouds like G2 are currently orbiting
Sgr A�?

In the following Sections, we review the most popular theoretical scenarios
proposed to explain the formation of G2, and we highlight their major drawbacks.

6.5.1 The Pure Gas Cloud Hypothesis

The models proposed to explain the nature of G2 can be grouped in two different
families: (a) the ‘true’ cloud scenarios, and (b) the ‘hidden’ central object scenarios.
In the present section we consider the former models, while the latter will be
discussed in the next Section. The main difference between the two families of
scenarios is that the expected pericentre of the orbit is within (outside) the tidal
radius of a gas cloud (star).

According to the cloud scenario, G2 is a cold-ish gas clump, confined by the hot
gas surrounding SgrA�. The gas temperature in the inner arcsec is �107–8 K. The
cooling timescale of such hot gas is mush longer than the dynamical timescale [47].
Thus, the cloud cannot have formed in situ in the central arcsec, but must come from
further out.

A possible scenario (e.g. [33]) is that the cloud originated from the winds of the
early-type stars in the CW disc. Winds of a luminous blue variable star can be as
slow as 300–500 km s�1. When shocked, they are heated to �106 K and cool quickly
to �104 K [33], leading to the formation of cold cloudlets embedded in the hot gas
[120]. The coincidence of the orbital plane of G2 with the orientation of the CW
disc encourages the ‘shocked wind debris’ hypothesis. While ‘upstream’ winds (i.e.
winds emitted in the direction of motion of the parent star) have velocities in excess
of 1000 km s�1 and are ejected from the GC, ‘downstream’ winds (i.e. winds emitted
against the direction of motion of the parent star) have velocities <500 km s�1 and
may fall toward Sgr A� on a very eccentric orbit.

Alternatively, G2 might have originated from high-velocity stellar winds that
collided with each other, losing their initial angular momentum [48]. Furthermore,
G2 might have formed as a result of a cooling instability in the accretion flow toward
Sgr A� [85]. In this case, the radial orbit is explained by the fact that the cloud
belongs to a gas inflow.

Finally, [96] recently proposed that G2 formed out of the debris stream produced
by the removal of mass from the outer envelope of a nearby giant star. Their adaptive
mesh hydrodynamical simulations of the returning tidal debris stream show that the
stream condenses into clumps that fall periodically onto Sgr A�. G2 might be one of
these clumps. Two intriguing results of this model are that (a) the orbits of several
observed GC stars are consistent with the debris stream scenario, (b) there might be
several other G2-like clouds in the GC.

The cloud hypothesis (including the aforementioned ‘shocked wind debris’,
‘stellar wind collision’, ‘cooling instability’ and ‘debris stream’ scenarios) is
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consistent with existing observations [86]. The scenarios in which G2 is a collection
of smaller droplets might even account for the observed constant luminosity. In fact,
G2 is stretched by the SMBH’s tidal shear along its orbit, while it is compressed
in the transverse direction by the hot gas. This double effect is expected to produce
changes in the luminosity. On the other hand, if G2 is composed of many little
sub-clumps, the sub-clumps might be less affected by the shear and compression
internally. The ‘collection of smaller droplets’ would allow to explain even another
property: the large (�100 km s�1) internal velocity dispersion. In fact, the cold
droplets are embedded in diffuse hot gas and might be pressure confined by this
hot inter-droplet gas.

The main difficulty of the ‘true’ cloud models [86] is their apparent inability to
explain the ‘compactness’ of G2 found in the most recent data: the ‘head’ of G2 (i.e.
the leading bulk of G2 emission) is much more compact than expected (from models
and simulations, e.g. [33, 210]) for a gas cloud starting in pressure equilibrium at the
apocentre of the predicted orbit (�0:041 pc, i.e. the inner rim of the ring of early-
type stars). Furthermore, the head of G2 survived to the pericentre passage, without
undergoing significant disruption.

This issue might be overcome by assuming that the cloud formed closer to the
GC (�0:0245 pc, [33]), or that it is ‘magnetically arrested’ [221]. Alternatively, the
cloud might be a spherical shell of gas [210], or a nova ejecta [166], rather than a
compact cloud. Hydrodynamical simulations (see Fig. 6.34) show that the spherical
shell model is in agreement with observations, even if the shell formed at apocentre,
in the ring of early-type stars. Finally, it may be that we observe only the ‘tip of the
iceberg’, i.e. that the head of G2 is the very dense top of a much more massive (but
less dense) gas inflow.

Fig. 6.34 Density evolution of a spherical shell matching the properties of GC (model SS01 of
[210]). The simulation was performed with the hydrodynamical code PLUTO [168]. Overlaid as
dotted white lines are the positions of test particles initially located at the outer ring boundary. The
axis labels are given in mpc. Figure 5 of [210]
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Fig. 6.35 Density maps of the stellar wind (around a T Tauri star) disrupted by the SMBH, in the
fiducial run of [19]. From top to bottom: source distance of 1”.21, 0”.43, and 0”.15 from Sgr A�.
Figure 2 of [19]

6.5.2 The Central Object Scenario

In the central object scenario, G2 is the atmosphere of an unresolved central object
that continuously loses gas. Ionizations and recombinations of this gas would be
responsible for the observed line emission (Br-� luminosity � a few �1030 erg s�1,
corresponding to an emission measure �1057 cm�3). The object might have formed
in the disc of early-type stars, and was then scattered into a highly eccentric orbit
due to a close encounter with another stellar (or compact) object.

As to the nature of the object, a planetary nebula [84], a proto-planetary disc
around a low-mass star [178], a circumstellar gas disc around an old low-mass star,
disrupted by a stellar black hole [172], the mass-loss envelope of a T Tauri star
([217], see also [19, 60, 243], and Fig. 6.35), a merged star [197], and a giant gaseous
proto-planet (i.e. a planetary embryo that formed from a gravitational instability in
a protoplanetary disc, [152]) have been proposed.

Both the compactness of G2’s head and the survival of G2 to pericentre passage
can be easily accounted for, in the frame of the compact source scenario, because of
the small tidal radius of the central object (�10AU). In the hypothesis of a T Tauri
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star, the Br-� emission comes from the inner cold bow shock, where the stellar
wind is impacted by the hot gas in proximity of Sgr A� [217]. In the scenarios
of both a giant gaseous protoplanet and a protoplanetary disc, the Br-� emission
arises from photoevaporation due to the ultraviolet background of the nuclear star
cluster, and is enhanced by partial tidal stripping [152, 178]. Finally, the scenario of
a proto-planetary disc [178] predicts an increase in the luminosity of the Br-� line
by a factor of �5 at pericentre passage, quite higher than the observed value (which
is only a factor of �2, [192]). On the other hand, this mismatch could be due to
an overestimate of the recombination rate (see e.g. [152]). As recently highlighted
by Witzel et al. [243], the high L0 continuum luminosity (corresponding to �2 �
1033erg s�1) can be easily explained by a dust-enshrouded 1–2Mˇ star. If the central
source is too weak (e.g. in the case of a protoplanet), the warm dust must be spread
over a sufficiently large volume (radius &5 � 1012 cm), to explain the L0 continuum
luminosity.

In summary, most of the proposed central object scenarios and pure cloud
scenarios are still viable to explain the dusty object G2: the nature of this object
remains quite elusive.

6.6 Conclusions: Open Questions and Future Work

In this review, we have briefly summarized the most recent observational results
about the GC (Sect. 6.2), and we have discussed the main theoretical scenarios for
the formation of the early-type stars (Sects. 6.3–6.4) and for the nature of the G2
cloud (Sect. 6.5) in the GC. In this section, we would like to summarize the main
scenarios for the formation of the early-type stars in the GC and highlight the pros
and the cons of each of them.

The main scenarios for the formation of the CW disc of early-type stars are the
following:

• Fragmentation of the outer parts of a past accretion disc (e.g. [45, 129, 179, 181,
182]). This scenario appears promising when looking at the relevant timescales,
but cannot easily explain (a) the non-zero eccentricity of the stellar orbits, (b) the
observed thickness of the disc, (c) the absence of any remnant of a past accretion
disc. The second issue can be circumvented by invoking some fast mechanism to
increase inclinations (e.g. precession exerted by the CNR, Kozai resonance), but
the other two issues are more difficult to overcome.

• Disruption of a molecular cloud which results in the formation of a gas disc
sufficiently dense to fragment into stars (e.g. [6, 7, 29, 109, 129, 144, 148, 150,
241]). Recent simulations show that this scenario can reproduce the observed
distribution of eccentricities and semi-major axes of the CW stars, together
with the thickness of the disc. A difficulty of this model is that the molecular
cloud must have been on a fine-tuned orbit (i.e. with sufficiently low angular
momentum, or with nearly zero impact parameter, to engulf Sgr A�). This issue
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might be overcome by assuming either that a cloud-cloud collision reduced the
angular momentum of the cloud or that the disc was formed by gaseous streamers
(such as those observed in the region of the CNR) rather than by a coherent
molecular cloud.

• Inspiral and disruption of a star cluster (e.g. [76, 116]). This process appears to
be too slow to be consistent with the age of the CW stars and unable to explain
the top-heavy MF. The presence of an IMBH at the centre of the cluster mitigates
the requirements on the mass and density of the cluster for a fast inspiral but (a)
there is so far no observational evidence for an IMBH in the GC, (b) depending
on the mass and eccentricity of the IMBH, interactions may act to randomise
the inclinations and thermalise the eccentricities on timescales of 1 Myr or less,
producing a system which is consistent with the properties of the S-cluster rather
than those of the CW disc.

The main scenarios for the formation of the early-type stars that do not lie in
the CW disc, including the (B-type) S-stars can be summarized as follows:

• Binary breakup scenario: the SMBH disrupts stellar binaries on eccentric orbits
that take them within their tidal radius via the Hill’s mechanism and captures
one of the components on an eccentric bound orbit (e.g. [105, 169]). The large
eccentricities of the stars are thermalised within the B-stars lifetime by resonant
relaxation against the background cusp of stars and remnants.

• The inspiral and disruption of a star cluster with an IMBH can explain both
the isotropic spatial distribution of the S-stars as well as the roughly thermal
eccentricity distribution. However, formation of an IMBH in a cluster has only
been predicted from N-body simulations. In addition, tidal stripping of stars
during the cluster inspiral predicts the deposition of a much larger number of
stars outside the S-cluster than are actually observed.

Relaxation processes are necessary ingredients of all above models in that they
cause the orbital distributions of the young stars to evolve in time. In particular,
resonant relaxation is required for the eccentricity distribution of stars captured from
disrupted binaries to be converted into a thermal distribution. In the same model,
scattering off massive perturbers is necessary to ensure that a sufficient number of
stellar binaries born at large distances are places onto highly eccentric orbits at any
time.

Precession in an axisymmetric potential and Kozai-Lidov resonances may
explain the formation of the WR/O stars that do not lie in the CW disc (e.g.
[97, 98, 138, 139, 151, 224]). According to these processes, the early-type stars that
do not belong to the CW disc might be the former members of a now dismembered
disc and/or the former members of the outer parts of the CW disc. This process can
explain the outliers at>0:04 pc but not the S-stars, unless the perturbing potential in
the past was different from the current one (e.g. [38] explain the S-stars with Kozai-
like resonance, by assuming that the inner edge of the gas disc was �0:04 pc in the
past). Another intriguing idea is that the two-body relaxation time-scale in the inner



264 M. Mapelli and A. Gualandris

parts of the disc (.0:05 pc) might be much shorter than previously thought [226],
leading to a fast relaxation of the innermost stellar orbits.

This short overview of formation scenarios for the young stars shows that
there are a number of open questions about the recent star formation history
and dynamical evolution of the Galactic Centre. The scenario of molecular-cloud
disruption has become increasingly popular to explain the formation of the CW
disc, but current simulations are far from realistically tracing the formation of stars
in the gaseous disc. The treatment of shocks in the gas is crucial in this context
but the SPH codes used so far to simulate the disruption of the molecular cloud
are not the most suitable to capture the physics of shocks (e.g. [2]). Simulations
with different techniques (e.g. the adaptive-mesh refinement, AMR, technique) are
absolutely needed to confirm these results. Radiative transfer from the newly born
stars has never been accounted for (even if this is a likely minor effect with respect
to SMBH heating). The explosion of core-collapse supernovae (the stars in the CW
disc are &3Myr old) has never been considered: it might have a crucial impact on
the evaporation of the gas disc. The adopted cooling functions and recipes for the
chemical composition of gas in the GC are critical too (see the discussion about
opacity in [150]). We also know that the GC hosts strong magnetic fields: their
effects on the formation of the early-type stars have been neglected so far.

Furthermore, we find there has been a gap between N-body/SPH codes, used to
simulate the evolution of gas, and a dissipationless direct-summation N-body codes,
used to probe the secular evolution of stars. Only a few studies try to fill this gap (e.g.
[151], and references therein). More accurate N-body integrators need to be coupled
to SPH or AMR codes, in order to have a global picture of the interplay between
gas physics and dynamics in the GC. Finally, the formation of the S-stars is far from
being understood, as all the proposed mechanisms suffer potential difficulties and/or
substantial draw-backs.

From an observational point of view, probably no other region in the sky has
been so thoroughly scanned and monitored as the GC, in the last �10 years. ALMA
is about to provide an exciting view of molecular gas and ongoing star formation
in the GC [253]. Forthcoming observations with available facilities (e.g. the 8-m
class telescopes VLT and Keck II) will provide more accurate measurements of the
orbits of the S-stars, of the mass of the SMBH, of the enclosed mass in the GC
and of the main properties of the early-type stars. With an imaging resolution of a
few milliarcseconds and an astrometric accuracy of 10�as, the second generation
instrument for the VLT Interferometer, GRAVITY, will be able to measure the
proper motion of matter (stars or hot spots in the accretion disk) down to the event
horizon of the black hole, hereby probing spacetime in its immediate vicinity. Future
30-m class telescopes (the European Extremely Large Telescope, E-ELT, and the
Thirty Meter Telescope, TMT) will make a huge difference with respect to the past:
a diffraction-limited resolution of �12mas will be achieved, which will allow for
unprecedented astrometric precision (�0:1mas, e.g. [246]). This will offer a unique
laboratory to study the intriguing processes that take place in the neighbourhood
of a SMBH. Of particular relevance is the potential detection of relativistic effects,
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which can be accomplished by a combination of new facilities, longer monitoring of
the currently known stars, and the detection of new stars at smaller distances from
the SMBH.
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Chapter 7
The Effective-One-Body Approach
to the General Relativistic Two Body Problem

Thibault Damour and Alessandro Nagar

Abstract The two-body problem in General Relativity has been the subject of
many analytical investigations. After reviewing some of the methods used to tackle
this problem (and, more generally, the N-body problem), we focus on a new, recently
introduced approach to the motion and radiation of (comparable mass) binary
systems: the Effective One Body (EOB) formalism. We review the basic elements
of this formalism, and discuss some of its recent developments. Several recent
comparisons between EOB predictions and Numerical Relativity (NR) simulations
have shown the aptitude of the EOB formalism to provide accurate descriptions of
the dynamics and radiation of various binary systems (comprising black holes or
neutron stars) in regimes that are inaccessible to other analytical approaches (such
as the last orbits and the merger of comparable mass black holes). In synergy with
NR simulations, post-Newtonian (PN) theory and Gravitational Self-Force (GSF)
computations, the EOB formalism is likely to provide an efficient way of computing
the very many accurate template waveforms that are needed for Gravitational Wave
(GW) data analysis purposes.

7.1 Introduction

The general relativistic problem of motion, i.e. the problem of describing the
dynamics of N gravitationally interacting extended bodies, is one of the cardinal
problems of Einstein’s theory of gravitation. This problem has been investigated
from the early days of development of General Relativity, notably through the
pioneering works of Einstein, Droste and De Sitter. These authors introduced
the post-Newtonian (PN) approximation method, which combines three different
expansions: (a) a weak-field expansion .g�� � ��� � h�� � 1/; (b) a slow-motion
expansion .v=c � 1/; and a near-zone expansion

�
1
c @t h�� � @xh��

	
. PN theory

could be easily worked out to derive the first post-Newtonian (1PN) approximation,
i.e. the leading-order general relativistic corrections to Newtonian gravity (involving
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one power of 1=c2). However, the use of the PN approximation for describing the
dynamics of N extended bodies turned out to be fraught with difficulties. Most
of the early derivations of the 1PN-accurate equations of motion of N bodies
turned out to involve errors: this is, in particular, the case of the investigations of
Droste [79], De Sitter [77], Chazy [39] and Levi-Civita [109]. These errors were
linked to incorrect treatments of the internal structures of the bodies. Apart from the
remarkable 1917 work of Lorentz and Droste [113] (which seems to have remained
unnoticed during many years), the first correct derivations of the 1PN-accurate
equations of motion date from 1938, and were obtained by Einstein et al. [83],
and Eddington and Clark [82]. After these pioneering works (and the investigations
they triggered, notably in Russia [85] and Poland), the general relativistic N-body
problem reached a first stage of maturity and became codified in various books,
notably in the books of Fock [86], Infeld and Plebanski [99], and in the second
volume of the treatise of Landau and Lifshitz (starting, at least, with the 1962 second
English edition).

For many years, the 1PN approximation turned out to be accurate enough for
applying Einstein’s theory to known N-body systems, such as the solar system, and
various binary stars. It is still true today that the 1PN approximation (especially
when used in its multi-chart version, see below) is adequate for describing general
relativistic effects in the solar system. However, the discovery in the 1970s of binary
systems comprising strongly self-gravitating bodies (black holes or neutron stars)
has obliged theorists to develop improved approaches to the N-body problem. These
improved approaches are not limited (as the traditional PN method) to the case
of weakly self-gravitating bodies and can be viewed as modern versions of the
Einstein-Infeld-Hoffmann classic work [83].

In addition to the need of considering strongly self-gravitating bodies, the
discovery of binary pulsars in the mid 1970s (starting with the Hulse-Taylor
pulsar PSR 1913 C 16) obliged theorists to go beyond the 1PN .O.v2=c2//
relativistic effects in the equations of motion. More precisely, it was necessary
to go to the 2.5PN approximation level, i.e. to include terms O.v5=c5/ beyond
Newton in the equations of motion. This was achieved in the 1980s by several
groups [41, 44, 46, 106, 130]. [Let us note that important progress in obtaining
the N-body metric and equations of motion at the 2PN level was achieved by the
Japanese school in the 1970s [117–119].]

Motivation for pushing the accuracy of the equations of motion beyond the 2.5PN
level came from the prospect of detecting the gravitational wave signal emitted by
inspiralling and coalescing binary systems, notably binary neutron star (BNS) and
binary black hole (BBH) systems. The 3PN-level equations of motion (including
terms O.v6=c6/ beyond Newton) were derived in the late 1990s and early 2000s
[24, 26, 63, 100, 101] (they have been recently rederived in [87]). Recently, the
4PN-level dynamics has been tackled in [18, 88, 102, 103].

Separately from these purely analytical approaches to the motion and radiation of
binary systems, which have been developed since the early days of Einstein’s theory,
Numerical Relativity (NR) simulations of Einstein’s equations have relatively
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recently (2005) succeeded (after more than thirty years of developmental progress)
to stably evolve binary systems made of comparable mass black holes [2, 29, 38,
120]. This has led to an explosion of works exploring many different aspects of
strong-field dynamics in General Relativity, such as spin effects, recoil, relaxation
of the deformed horizon formed during the coalescence of two black holes to a
stationary Kerr black hole, high-velocity encounters, etc.; see [121] for a review
and [115] for an impressive example of the present capability of NR codes. In
addition, recently developed codes now allow one to accurately study the orbital
dynamics, and the coalescence of binary neutron stars [129]. Much physics remains
to be explored in these systems, especially during and after the merger of the neutron
stars (which involves a much more complex physics than the pure-gravity merger of
two black holes).

Recently, a new source of information on the general relativistic two-body
problem has opened: gravitational self-force (GSF) theory. This approach goes one
step beyond the test-particle approximation (already used by Einstein in 1915) by
taking into account self-field effects that modify the leading-order geodetic motion
of a small mass m1 moving in the background geometry generated by a large
mass m2. After some ground work (notably by DeWitt and Brehme) in the 1960s,
GSF theory has recently undergone rapid developments (mixing theoretical and
numerical methods) and can now yield numerical results that yield access to new
information on strong-field dynamics in the extreme mass-ratio limit m1 � m2. See
[5] for a review.

Each of the approaches to the two-body problem mentioned so far, PN theory,
NR simulations and GSF theory, have their advantages and their drawbacks. It has
become recently clear that the best way to meet the challenge of accurately com-
puting the gravitational waveforms (depending on several continuous parameters)
that are needed for a successful detection and data analysis of GW signals in the
upcoming LIGO/Virgo/GEO/: : : network of GW detectors is to combine knowledge
from all the available approximation methods: PN, NR and GSF. Several ways
of doing so are a priori possible. For instance, one could try to directly combine
PN-computed waveforms (approximately valid for large enough separations, say
r & 10G.m1 C m2/=c2) with NR waveforms (computed with initial separations
r0 > 10G.m1 C m2/=c2 and evolved up to merger and ringdown). However,
this method still requires too much computational time, and is likely to lead to
waveforms of rather poor accuracy, see, e.g., [94].

On the other hand, five years before NR succeeded in simulating the late inspiral
and the coalescence of binary black holes, a new approach to the two-body problem
was proposed: the Effective One Body (EOB) formalism [32, 33, 42, 61]. The basic
aim of the EOB formalism is to provide an analytical description of both the motion
and the radiation of coalescing binary systems over the entire merger process,
from the early inspiral, right through the plunge, merger and final ringdown. As
early as 2000 [33] this method made several quantitative and qualitative predictions
concerning the dynamics of the coalescence, and the corresponding GW radiation,
notably: (a) a blurred transition from inspiral to a ‘plunge’ that is just a smooth
continuation of the inspiral, (b) a sharp transition, around the merger of the black
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holes, between a continued inspiral and a ring-down signal, and (c) estimates of the
radiated energy and of the spin of the final black hole. In addition, the effects of
the individual spins of the black holes were investigated within the EOB [34, 42]
and were shown to lead to a larger energy release for spins parallel to the orbital
angular momentum, and to a dimensionless rotation parameter J=E2 always smaller
than unity at the end of the inspiral (so that a Kerr black hole can form right after
the inspiral phase). All those predictions have been broadly confirmed by the results
of the recent numerical simulations performed by several independent groups (for a
review of numerical relativity results and references see [121]). Note that, in spite
of the high computer power used in NR simulations, the calculation, checking and
processing of one sufficiently long waveform (corresponding to specific values of
the many continuous parameters describing the two arbitrary masses, the initial
spin vectors, and other initial data) takes on the order of one month. This is a
very strong argument for developing analytical models of waveforms. For a recent
comprehensive comparison between analytical models and numerical waveforms
see [95].

In the present work, we shall briefly review only a few facets of the general
relativistic two body problem. [See, e.g., [20, 89] for recent reviews dealing with
other facets of, or approaches to, the general relativistic two-body problem.] First,
we shall recall the essential ideas of the multi-chart approach to the problem of
motion, having especially in mind its application to the motion of compact binaries,
such as BNS or BBH systems. Then we shall focus on the Effective One Body
(EOB) approach to the motion and radiation of binary systems, from its conceptual
framework to its comparison to NR simulations.

7.2 Multi-Chart Approach to the N-Body Problem

The traditional (text book) approach to the problem of motion of N separate bodies
in GR consists of solving, by successive approximations, Einstein’s field equations
(we use the signature � C CC)

R�� � 1

2
R g�� D 8� G

c4
T�� ; (7.1)

together with their consequence

r� T�� D 0 : (7.2)

To do so, one assumes some specific matter model, say a perfect fluid,

T�� D ."C p/ u� u� C p g�� : (7.3)
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One expands (say in powers of Newton’s constant) the metric,

g��.x
�/ D ��� C h.1/�� C h.2/�� C : : : ; (7.4)

and use the simplifications brought by the ‘Post-Newtonian’ approximation
(@0 h�� D c�1 @t h�� � @i h�� ; v=c � 1, p � "). Then one integrates the
local material equation of motion (7.2) over the volume of each separate body,
labelled say by a D 1; 2; : : : ;N. In so doing, one must define some ‘center of mass’
zi

a of body a, as well as some (approximately conserved) ‘mass’ ma of body a,
together with some corresponding ‘spin vector’ Si

a and, possibly, higher multipole
moments.

An important feature of this traditional method is to use a unique coordinate
chart x� to describe the full N-body system. For instance, the center of mass, shape
and spin of each body a are all described within this common coordinate system
x�. This use of a single chart has several inconvenient aspects, even in the case of
weakly self-gravitating bodies (as in the solar system case). Indeed, it means for
instance that a body which is, say, spherically symmetric in its own ‘rest frame’
X˛ will appear as deformed into some kind of ellipsoid in the common coordinate
chart x�. Moreover, it is not clear how to construct ‘good definitions’ of the center
of mass, spin vector, and higher multipole moments of body a, when described in
the common coordinate chart x�. In addition, as we are possibly interested in the
motion of strongly self-gravitating bodies, it is not a priori justified to use a simple
expansion of the type (7.4) because h.1/�� � P

a
Gma=.c2 jx�zaj/will not be uniformly

small in the common coordinate system x�. It will be small if one stays far away
from each object a, but, it will become of order unity on the surface of a compact
body.

These two shortcomings of the traditional ‘one-chart’ approach to the relativistic
problem of motion can be cured by using a ‘multi-chart’ approach. The multi-chart
approach describes the motion of N (possibly, but not necessarily, compact) bodies
by using N C 1 separate coordinate systems: (a) one global coordinate chart x�

(� D 0; 1; 2; 3) used to describe the spacetime outside N ‘tubes’, each containing
one body, and (b) N local coordinate charts X˛a (˛ D 0; 1; 2; 3; a D 1; 2; : : : ;N)
used to describe the spacetime in and around each body a. The multi-chart approach
was first used to discuss the motion of black holes and other compact objects
[44, 78, 81, 104, 114, 138–140]. Then it was also found to be very convenient for
describing, with the high-accuracy required for dealing with modern technologies
such as VLBI, systems of N weakly self-gravitating bodies, such as the solar system
[58, 107].

The essential idea of the multi-chart approach is to combine the information
contained in several expansions. One uses both a global expansion of the type (7.4)
and several local expansions of the type

G˛ˇ.X
�
a / D G.0/

˛ˇ .X
�
a I ma/C H.1/

˛ˇ .X
�
a I ma;mb/C � � � ; (7.5)
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where G.0/

˛ˇ .XI ma/ denotes the (possibly strong-field) metric generated by an
isolated body of mass ma (possibly with the additional effect of spin).

The separate expansions (7.4) and (7.5) are then ‘matched’ in some overlapping
domain of common validity of the type Gma=c2 . Ra � jx � zaj � d � jxa � xbj
(with b ¤ a), where one can relate the different coordinate systems by expansions
of the form

x� D z�a .Ta/C e�i .Ta/Xi
a C 1

2
f�ij .Ta/Xi

a Xj
a C � � � (7.6)

The multi-chart approach becomes simplified if one considers compact bodies (of
radius Ra comparable to 2Gma=c2). In this case, it was shown [44], by considering
how the ‘internal expansion’ (7.5) propagates into the ‘external’ one (7.4) via the
matching (7.6), that, in General Relativity, the internal structure of each compact
body was effaced to a very high degree, when seen in the external expansion (7.4).
For instance, for non spinning bodies, the internal structure of each body (notably
the way it responds to an external tidal excitation) shows up in the external problem
of motion only at the fifth post-Newtonian (5PN) approximation, i.e. in terms of
order .v=c/10 in the equations of motion.

This ‘effacement of internal structure’ indicates that it should be possible to
simplify the rigorous multi-chart approach by skeletonizing each compact body
by means of some delta-function source. Mathematically, the use of distributional
sources is delicate in a nonlinear theory such as GR. However, it was found that
one can reproduce the results of the more rigorous matched-multi-chart approach
by treating the divergent integrals generated by the use of delta-function sources by
means of (complex) analytic continuation [44]. In particular, analytic continuation
in the dimension of space d [137] is very efficient (especially at high PN orders).

Finally, the most efficient way to derive the general relativistic equations of
motion of N compact bodies consists of solving the equations derived from the
action (where g � � det.g��/)

S D
Z

ddC1 x

c

p
g

c4

16� G
R.g/�

X
a

ma c
Z q

�g��.z�a/ dz�a dz�a ; (7.7)

formally using the standard weak-field expansion (7.4), but considering the space
dimension d as an arbitrary complex number which is sent to its physical value
d D 3 only at the end of the calculation. This ‘skeletonized’ effective action
approach to the motion of compact bodies has been extended to other theories
of gravity [81, 139]. Finite-size corrections can be taken into account by adding
nonminimal worldline couplings to the effective action (7.7) [48, 92].

As we shall further discuss below, in the case of coalescing BNS systems, finite-
size corrections (linked to tidal interactions) become relevant during late inspiral
and must be included to accurately describe the dynamics of coalescing neutron
stars.
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Here, we shall not try to describe the results of the application of the multi-chart
method to N-body (or 2-body) systems. For applications to the solar system see the
book [30] of V. Brumberg; see also several articles (notably by M. Soffel) in [108].
For applications of this method to binary pulsar systems (and to their use as tests of
gravity theories) see the articles by T. Damour and M. Kramer in [40].

7.3 EOB Description of the Conservative Dynamics
of Two Body Systems

Before reviewing some of the technical aspects of the EOB method, let us indicate
the historical roots of this method. First, we note that the EOB approach comprises
three, rather separate, ingredients:

1. a description of the conservative (Hamiltonian) part of the dynamics of two
bodies;

2. an expression for the radiation-reaction part of the dynamics;
3. a description of the GW waveform emitted by a coalescing binary system.

For each one of these ingredients, the essential inputs that are used in EOB works
are high-order post-Newtonian (PN) expanded results which have been obtained by
many years of work, by many researchers (see the review [20]). However, one of
the key ideas in the EOB philosophy is to avoid using PN results in their original
“Taylor-expanded” form (i.e. c0 C c1 v=c C c2 v2=c2 C c3 v3=c3 C � � � C cn v

n=cn/,
but to use them instead in some resummed form (i.e. some non-polynomial function
of v=c, defined so as to incorporate some of the expected non-perturbative features
of the exact result). The basic ideas and techniques for resumming each ingredient
of the EOB are different and have different historical roots.

Concerning the first ingredient, i.e. the EOB Hamiltonian, it was inspired by an
approach to electromagnetically interacting quantum two-body systems introduced
by Brézin et al. [31].

The resummation of the second ingredient, i.e. the EOB radiation-reaction force
F , was initially inspired by the Padé resummation of the flux function introduced
by Damour et al. [59]. More recently, a new and more sophisticated resummation
technique for the (waveform and the) radiation reaction forceF has been introduced
by Damour et al. [69] and Damour and Nagar [55]. It will be discussed in detail
below.

As for the third ingredient, i.e. the EOB description of the waveform emitted by a
coalescing black hole binary, it was mainly inspired by the work of Davis et al. [76]
which discovered the transition between the plunge signal and a ringing tail when a
particle falls into a black hole. Additional motivation for the EOB treatment of the
transition from plunge to ring-down came from work on the, so-called, “close limit
approximation” [122].
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Within the usual PN formalism, the conservative dynamics of a two-body system
is currently fully known up to the 3PN level [24, 25, 63, 87, 100, 101] (see below
for the partial knowledge beyond the 3PN level). Going to the center of mass of the
system .p1 C p2 D 0/, the 3PN-accurate Hamiltonian (in Arnowitt-Deser-Misner-
type coordinates) describing the relative motion, q D q1 � q2, p D p1 D �p2, has
the structure

Hrelative
3PN .q; p/ D H0.q; p/C 1

c2
H2.q; p/C 1

c4
H4.q; p/C 1

c6
H6.q; p/ ; (7.8)

where

H0.q; p/ D 1

2�
p2 � GM�

jqj ; (7.9)

with

M � m1 C m2 and � � m1 m2=M ; (7.10)

corresponds to the Newtonian approximation to the relative motion, while H2

describes 1PN corrections, H4 2PN ones and H6 3PN ones. In terms of the rescaled
variables q0 � q=GM, p0 � p=�, the explicit form (after dropping the primes for
readability) of the 3PN-accurate rescaled Hamiltonian OH � H=� reads [60, 62, 63]

OHN.q; p/ D p2

2
� 1

q
; (7.11)

OH1PN.q; p/ D 1

8
.3� � 1/.p2/2 � 1

2
Œ.3C �/p2 C �.n � p/2	

1

q
C 1

2q2
; (7.12)

OH2PN.q; p/ D 1

16
.1� 5� C 5�2/.p2/3

C 1

8
Œ.5 � 20� � 3�2/.p2/2 � 2�2.n � p/2p2 � 3�2.n � p/4	

1

q

C 1

2
Œ.5C 8�/p2 C 3�.n � p/2	

1

q2
� 1

4
.1C 3�/

1

q3
; (7.13)

OH3PN.q; p/ D 1

128
.�5C 35� � 70�2 C 35�3/.p2/4

C 1

16
Œ.�7C 42� � 53�2 � 5�3/.p2/3 C .2 � 3�/�2.n � p/2.p2/2

C 3.1 � �/�2.n � p/4p2 � 5�3.n � p/6	
1

q

C
�
1

16
.�27C 136� C 109�2/.p2/2 C 1

16
.17C 30�/�.n � p/2p2
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C 1

12
.5C 43�/�.n � p/4

�
1

q2

C
��

�25
8

C
�
1

64
�2 � 335

48

�
� � 23

8
�2
�

p2

C
�

�85
16

� 3

64
�2 � 7

4
�

�
�.n � p/2

�
1

q3

C
�
1

8
C
�
109

12
� 21

32
�2
�
�

�
1

q4
: (7.14)

In these formulas � denotes the symmetric mass ratio:

� � �

M
� m1 m2

.m1 C m2/2
: (7.15)

The dimensionless parameter � varies between 0 (extreme mass ratio case) and 1
4

(equal mass case) and plays the rôle of a deformation parameter away from the
test-mass limit.

It is well known that, at the Newtonian approximation, H0.q; p/ can be thought
of as describing a ‘test particle’ of mass � orbiting around an ‘external mass’ GM.
The EOB approach is a general relativistic generalization of this fact. It consists
in looking for an ‘effective external spacetime geometry’ geff

��.x
�I GM; �/ such that

the geodesic dynamics of a ‘test particle’ of mass � within geff
��.x

�;GM; �/ is
equivalent (when expanded in powers of 1=c2) to the original, relative PN-expanded
dynamics (7.8).

Let us explain the idea, proposed in [32], for establishing a ‘dictionary’ between
the real relative-motion dynamics, (7.8), and the dynamics of an ‘effective’ particle
of mass � moving in geff

��.x
�;GM; �/. The idea consists in ‘thinking quantum

mechanically’.1 Instead of thinking in terms of a classical Hamiltonian, H.q; p/
(such as Hrelative

3PN , Eq. (7.8)), and of its classical bound orbits, we can think in terms of
the quantized energy levels E.n; `/ of the quantum bound states of the Hamiltonian
operator H. Oq; Op/. These energy levels will depend on two (integer valued) quantum
numbers n and `. Here (for a spherically symmetric interaction, as appropriate to
Hrelative), ` parametrizes the total orbital angular momentum (L2 D `.` C 1/ „2),
while n represents the ‘principal quantum number’ n D `C nr C 1, where nr (the
‘radial quantum number’) denotes the number of nodes in the radial wave function.
The third ‘magnetic quantum number’ m (with �` � m � `) does not enter the
energy levels because of the spherical symmetry of the two-body interaction (in the
center of mass frame). For instance, the non-relativistic Newton interaction Eq. (7.9)

1This is related to an idea emphasized many times by John Archibald Wheeler: quantum mechanics
can often help us in going to the essence of classical mechanics.
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gives rise to the well-known result

E0.n; `/ D �1
2
�

�
GM�

n „
�2

; (7.16)

which depends only on n (this is the famous Coulomb degeneracy). When consider-
ing the PN corrections to H0, as in Eq. (7.8), one gets a more complicated expression
of the form

Erelative
3PN .n; `/ D �1

2
�
˛2

n2

�
1C ˛2

c2

�c11
n`

C c20
n2

�

C ˛4

c4

� c13
n`3

C c22
n2`2

C c31
n3`

C c40
n4

�
C ˛6

c6

� c15
n`5

C : : :C c60
n6

� �
;

(7.17)

where we have set ˛ � GM�=„ D G m1 m2=„, and where we consider, for
simplicity, the (quasi-classical) limit where n and ` are large numbers. The 2PN-
accurate version of Eq. (7.17) had been derived by Damour and Schäfer [57] as
early as 1988 while its 3PN-accurate version was derived by Damour, Jaranowski
and Schäfer in 1999 [60]. The dimensionless coefficients cpq are functions of the
symmetric mass ratio � � �=M, for instance c40 D 1

8
.145� 15�C �2/. In classical

mechanics (i.e. for large n and `), it is called the ‘Delaunay Hamiltonian’, i.e. the
Hamiltonian expressed in terms of the action variables2 J D `„ D 1

2�

H
p' d', and

N D n„ D Ir C J, with Ir D 1
2�

H
pr dr.

The energy levels (7.17) encode, in a gauge-invariant way, the 3PN-accurate
relative dynamics of a ‘real’ binary. Let us now consider an auxiliary problem:
the ‘effective’ dynamics of one body, of mass �, following (modulo the Q term
discussed below) a geodesic in some �-dependent ‘effective external’ (spherically
symmetric) metric3

geff
�� dx� dx� D �A.RI �/ c2 dT2 C B.RI �/ dR2 C R2.d�2 C sin2 � d'2/ : (7.18)

Here, the a priori unknown metric functions A.RI �/ and B.RI �/will be constructed
in the form of expansions in GM=c2R:

A.RI �/ D 1C Qa1 GM

c2R
C Qa2

�
GM

c2R

�2
C Qa3

�
GM

c2R

�3
C Qa4

�
GM

c2R

�4
C � � � I

2We consider, for simplicity, ‘equatorial’ motions with m D `, i.e., classically, � D �
2

.
3It is convenient to write the ‘effective metric’ in Schwarzschild-like coordinates. Note that
the effective radial coordinate R differs from the two-body ADM-coordinate relative distance
RADM D jqj. The transformation between the two coordinate systems has been determined in
[32, 61].
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B.RI �/ D 1C Qb1 GM

c2R
C Qb2

�
GM

c2R

�2
C b3

�
GM

c2R

�3
C � � � ; (7.19)

where the dimensionless coefficients Qan; Qbn depend on �. From the Newtonian limit,
it is clear that we should set Qa1 D �2. In addition, as � can be viewed as a
deformation parameter away from the test-mass limit, we require that the effective
metric (7.18) tend to the Schwarzschild metric (of mass M) as � ! 0, i.e. that

A.RI � D 0/ D 1 � 2GM=c2R D B�1.RI � D 0/ :

Let us now require that the dynamics of the “one body” � within the effective
metric geff

�� be described by an “effective” mass-shell condition of the form

g��eff peff
� peff

� C �2 c2 C Q.peff
� / D 0 ;

where Q.p/ is (at least) quartic in p. Then by solving (by separation of variables)
the corresponding ‘effective’ Hamilton-Jacobi equation

g��eff

@Seff

@x�
@Seff

@x�
C �2c2 C Q

�
@Seff

@x�

�
D 0 ;

Seff D �Eeff t C Jeff ' C Seff.R/ ; (7.20)

one can straightforwardly compute (in the quasi-classical, large quantum numbers
limit) the effective Delaunay Hamiltonian Eeff.Neff; Jeff/, with Neff D neff „, Jeff D
`eff „ (where Neff D Jeff C Ieff

R , with Ieff
R D 1

2�

H
peff

R dR, Peff
R D @Seff.R/=dR). This

yields a result of the form

Eeff.neff; `eff/ D �c2 � 1

2
�
˛2

n2eff

�
1C ˛2

c2

�
ceff
11

neff`eff
C ceff

20

n2eff

�

C ˛4

c4

�
ceff
13

neff`
3
eff

C ceff
22

n2eff`
2
eff

C ceff
31

n3eff`eff
C ceff

40

n4eff

�

C ˛6

c6

�
ceff
15

neff`
5
eff

C : : :C ceff
60

n6eff

��
; (7.21)

where the dimensionless coefficients ceff
pq are now functions of the unknown coeffi-

cients Qan; Qbn entering the looked for ‘external’ metric coefficients (7.19).
At this stage, one needs to define a ‘dictionary’ between the real (relative)

two-body dynamics, summarized in Eq. (7.17), and the effective one-body one,
summarized in Eq. (7.21). As, on both sides, quantum mechanics tells us that the
action variables are quantized in integers (Nreal D n„, Neff D neff„, etc.) it is most
natural to identify n D neff and ` D `eff. One then still needs a rule for relating the
two different energies Erelative

real and Eeff. Buonanno and Damour [32] proposed to look
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for a general map between the real energy levels and the effective ones (which, as
seen when comparing (7.17) and (7.21), cannot be directly identified because they
do not include the same rest-mass contribution4), namely

Eeff

�c2
� 1 D f

�
Erelative

real

�c2

�
D Erelative

real

�c2

�
1C ˛1

Erelative
real

�c2
C ˛2

�
Erelative

real

�c2

�2

C ˛3

�
Erelative

real

�c2

�3
C : : :

�
: (7.22)

The ‘correspondence’ between the real and effective energy levels is illustrated in
Fig. 7.1.

Finally, identifying Eeff.n; `/=�c2 to 1 C f .Erelative
real .n; `/=�c2/ yields a system

of equations for determining the unknown EOB coefficients Qan; Qbn; ˛n, as well as
the three coefficients z1; z2; z3 parametrizing a general 3PN-level quartic mass-shell
deformation:

Q3PN.p/ D 1

c6
1

�2

�
GM

R

�2 

z1 p4 C z2 p2.n � p/2 C z3.n � p/4

�
:

[The need for introducing a quartic mass-shell deformation Q only arises at the 3PN
level.]

Fig. 7.1 Sketch of the correspondence between the quantized energy levels of the real and
effective conservative dynamics. n denotes the ‘principal quantum number’ (n D nr C `C 1, with
nr D 0; 1; : : : denoting the number of nodes in the radial function), while ` denotes the (relative)
orbital angular momentum .L2 D `.`C 1/„2/. Though the EOB method is purely classical, it is
conceptually useful to think in terms of the underlying (Bohr-Sommerfeld) quantization conditions
of the action variables IR and J to motivate the identification between n and ` in the two dynamics

4Indeed Etotal
real D Mc2 C Erelative

real D Mc2 C Newtonian terms C 1PN=c2 C 
 
 
 , while Eeffective D
�c2 C N C 1PN=c2 C 
 
 
 .
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The above system of equations for Qan; Qbn; ˛n (and zi at 3PN) was studied at
the 2PN level in [32], and at the 3PN level in [61]. At the 2PN level it was
found that, if one further imposes the natural condition Qb1 D C2 (so that the
linearized effective metric coincides with the linearized Schwarzschild metric with
mass M D m1 C m2), there exists a unique solution for the remaining five unknown
coefficients Qa2; Qa3; Qb2; ˛1 and ˛2. This solution is very simple:

Qa2 D 0 ; Qa3 D 2� ; Qb2 D 4 � 6� ; ˛1 D �

2
; ˛2 D 0 : (7.23)

At the 3PN level, it was found that the system of equations is consistent, and
underdetermined in that the general solution can be parametrized by the arbitrary
values of z1 and z2. It was then argued that it is natural to impose the simplifying
requirements z1 D 0 D z2, so that Q is proportional to the fourth power of the
(effective) radial momentum pr. With these conditions, the solution is unique at the
3PN level, and is still remarkably simple, namely

Qa4 D a4 � ; Qd3 D 2.3� � 26/� ; ˛3 D 0 ; z3 D 2.4� 3�/� :

Here, a4 denotes the number

a4 D 94

3
� 41

32
�2 ' 18:6879027 ; (7.24)

while Qd3 denotes the coefficient of .GM=c2R/3 in the PN expansion of the combined
metric coefficient

D.R/ � A.R/B.R/ :

Replacing B.R/ by D.R/ is convenient because (as was mentioned above), in the
test-mass limit � ! 0, the effective metric must reduce to the Schwarzschild metric,
namely

A.RI � D 0/ D B�1.RI � D 0/ D 1 � 2

�
GM

c2R

�
;

so that

D.RI � D 0/ D 1 :

The final result is that the three EOB potentials A;D;Q describing the 3PN two-
body dynamics are given by the following very simple results. In terms of the EOB
“gravitational potential”

u � GM

c2R
;
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A3PN.R/ D 1 � 2u C 2 � u3 C a4 � u4 ; (7.25)

D3PN.R/ � .A.R/B.R//3PN D 1 � 6�u2 C 2.3� � 26/�u3 ; (7.26)

Q3PN.q; p/ D 1

c2
2.4� 3�/� u2

p4r
�2
: (7.27)

In addition, the map between the (real) center-of-mass energy of the binary
system Erelative

real D Hrelative D E tot
relative � Mc2 and the effective one Eeff is found to

have the very simple (but non trivial) form

Eeff

�c2
D 1C Erelative

real

�c2

�
1C �

2

Erelative
real

�c2

�
D s � m2

1 c4 � m2
2 c4

2m1 m2 c4
(7.28)

where s D .E tot
real/

2 � .Mc2 C Erelative
real /2 is Mandelstam’s invariant s D �.p1 C p2/2.

It is truly remarkable that the EOB formalism succeeds in condensing the
complicated, original 3PN Hamiltonian, Eqs. (7.11)–(7.14), into the very simple
potentials A;D and Q displayed above, together with the simple energy map
Eq. (7.28). For instance, at the 1PN level, the already somewhat involved Lorentz-
Droste-Einstein-Infeld-Hoffmann 1PN dynamics (Eqs. (7.11) and (7.12)) is simply
described, within the EOB formalism, as a test particle of mass � moving in an
external Schwarzschild background of mass M D m1 C m2, together with the
(crucial but quite simple) energy transformation (7.28). [Indeed, the �-dependent
corrections to A and D start only at the 2PN level.] At the 2PN level, the seven rather
complicated �-dependent coefficients of OH2PN.q; p/, Eq. (7.13), get condensed into
the two very simple additional contributions C 2�u3 in A.u/, and � 6�u2 in D.u/.
At the 3PN level, the eleven quite complicated �-dependent coefficients of OH3PN,
Eq. (7.14), get condensed into only three simple contributions: C a4�u4 in A.u/,
C 2.3� � 26/�u3 in D.u/, and Q3PN given by Eq. (7.27). This simplicity of the
EOB results is not only due to the reformulation of the PN-expanded Hamiltonian
into an effective dynamics. Notably, the A-potential is much simpler that it could a
priori have been: (a) as already noted it is not modified at the 1PN level, while one
would a priori expect to have found a 1PN potential A1PN.u/ D 1 � 2u C �a2u2

with some non zero a2; and (b) there are striking cancellations taking place in the
calculation of the 2PN and 3PN coefficients Qa2.�/ and Qa3.�/, which were a priori
of the form Qa2.�/ D a2� C a0

2�
2, and Qa3.�/ D a3� C a0

3�
2 C a00

3�
3, but for which

the �-nonlinear contributions a0
2�
2; a0

3�
2 and a00

3�
3 precisely cancelled out. Similar

cancellations take place at the 4PN level (level at which it was recently possible
to compute the A-potential, see below). Let us note for completeness that, starting
at the 4PN level, the Taylor expansions of the A and D potentials depend on the
logarithm of u. The corresponding logarithmic contributions have been computed at
the 4PN level [28, 43] and even the 5PN one [11, 45]. They have been incorporated
in a recent, improved implementation of the EOB formalism [73].

The fact that the 3PN coefficient a4 in the crucial ‘effective radial potential’
A3PN.R/, Eq. (7.25), is rather large and positive indicates that the �-dependent
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nonlinear gravitational effects lead, for comparable masses .� � 1
4
), to a last stable

(circular) orbit (LSO) which has a higher frequency and a larger binding energy
than what a naive scaling from the test-particle limit .� ! 0/ would suggest.
Actually, the PN-expanded form (7.25) of A3PN.R/ does not seem to be a good
representation of the (unknown) exact function AEOB.R/ when the (Schwarzschild-
like) relative coordinate R becomes smaller than about 6GM=c2 (which is the radius
of the LSO in the test-mass limit). In fact, by continuity with the test-mass case,
one a priori expects that A3PN.R/ always exhibits a simple zero defining an EOB
“effective horizon” that is smoothly connected to the Schwarzschild event horizon
at R D 2GM=c2 when � ! 0. However, the large value of the a4 coefficient does
actually prevent A3PN to have this property when � is too large, and in particular
when � D 1=4. It was therefore suggested [61] to further resum5 A3PN.R/ by
replacing it by a suitable Padé .P/ approximate. For instance, the replacement of
A3PN.R/ by6

A13.R/ � P13ŒA3PN.R/	 D 1C n1u

1C d1u C d2u2 C d3u3
(7.29)

ensures that the � D 1
4

case is smoothly connected with the � D 0 limit.
The same kind of �-continuity argument, discussed so far for the A function,

needs to be applied also to the D3PN.R/ function defined in Eq. (7.26). A straight-
forward way to ensure that the D function stays positive when R decreases (since it
is D D 1 when � ! 0) is to replace D3PN.R/ by D0

3.R/ � P03 ŒD3PN.R/	, where P03
indicates the .0; 3/ Padé approximate and explicitly reads

D0
3.R/ D 1

1C 6�u2 � 2.3� � 26/�u3
: (7.30)

7.4 EOB Description of Radiation Reaction
and of the Emitted Waveform During Inspiral

In the previous Section we have described how the EOB method encodes the
conservative part of the relative orbital dynamics into the dynamics of an ‘effective’
particle. Let us now briefly discuss how to complete the EOB dynamics by
defining some resummed expressions describing radiation reaction effects, and

5The PN-expanded EOB building blocks A3PN.R/;B3PN.R/; : : : already represent a resummation
of the PN dynamics in the sense that they have “condensed” the many terms of the original PN-
expanded Hamiltonian within a very concise format. But one should not refrain to further resum
the EOB building blocks themselves, if this is physically motivated.
6We recall that the coefficients n1 and .d1; d2; d3/ of the .1; 3/ Padé approximate P13ŒA3PN.u/	 are
determined by the condition that the first four terms of the Taylor expansion of A13 in powers of
u D GM=.c2R/ coincide with A3PN.
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the corresponding waveform emitted at infinity. One is interested in circularized
binaries, which have lost their initial eccentricity under the influence of radiation
reaction. For such systems, it is enough (in first approximation [33]; see, however,
the recent results of Bini and Damour [16]) to include a radiation reaction force in
the p' equation of motion only. More precisely, we are using phase space variables
r; pr; '; p' associated to polar coordinates (in the equatorial plane � D �

2
). Actually

it is convenient to replace the radial momentum pr by the momentum conjugate to
the ‘tortoise’ radial coordinate R� D R

dR.B=A/1=2, i.e. PR�
D .A=B/1=2 PR. The

real EOB Hamiltonian is obtained by first solving Eq. (7.28) to get Htotal
real D p

s in
terms of Eeff, and then by solving the effective Hamilton-Jacobi equation to get Eeff

in terms of the effective phase space coordinates qeff and peff. The result is given by
two nested square roots (we henceforth set c D 1):

OHEOB.r; pr�
; '/ D Hreal

EOB

�
D 1

�

q
1C 2� . OHeff � 1/ ; (7.31)

where

OHeff D
vuutp2r�

C A.r/

 
1C p2'

r2
C z3

p4r�

r2

!
; (7.32)

with z3 D 2� .4�3�/. Here, we are using suitably rescaled dimensionless (effective)
variables: r D R=GM, pr�

D PR�
=�, p' D P'=�GM, as well as a rescaled time

t D T=GM. This leads to equations of motion for .r; '; pr�
; p'/ of the form

d'

dt
D @ OHEOB

@ p'
� ˝ ; (7.33)

dr

dt
D
�

A

B

�1=2
@ OHEOB

@ pr�

; (7.34)

dp'
dt

D OF ' ; (7.35)

dpr�

dt
D �

�
A

B

�1=2
@ OHEOB

@ r
; (7.36)

which explicitly read

d'

dt
D Ap'

�r2 OH OHeff

� ˝ ; (7.37)

dr

dt
D
�

A

B

�1=2
1

� OH OHeff

�
pr�

C z3
2A

r2
p3r�

�
; (7.38)
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dp'
dt

D OF ' ; (7.39)

dpr�

dt
D �

�
A

B

�1=2
1

2� OH OHeff(
A0 C p2'

r2

�
A0 � 2A

r

�
C z3

�
A0

r2
� 2A

r3

�
p4r�

)
; (7.40)

where A0 D dA=dr. As explained above the EOB metric function A.r/ is defined
by Padé resumming the Taylor-expanded result (7.19) obtained from the matching
between the real and effective energy levels (as we were mentioning, one uses a
similar Padé resumming for D.r/ � A.r/B.r/). One similarly needs to resum OF ' ,
i.e., the ' component of the radiation reaction which has been introduced on the
r.h.s. of Eq. (7.35).

Several methods have been tried during the development of the EOB formalism
to resum the radiation reaction OF ' (starting from the high-order PN-expanded
results that have been obtained in the literature). Here, we shall briefly explain the
new, parameter-free resummation technique for the multipolar waveform (and thus
for the energy flux) introduced in [51, 53] and perfected in [69]. To be precise, the
new results discussed in [69] are twofold: on the one hand, that work generalized
the ` D m D 2 resummed factorized waveform of [51, 53] to higher multipoles
by using the most accurate currently known PN-expanded results [15, 26, 27, 105]
as well as the higher PN terms which are known in the test-mass limit [134, 135];
on the other hand, it introduced a new resummation procedure which consists in
considering a new theoretical quantity, denoted as �`m.x/, which enters the .`;m/
waveform (together with other building blocks, see below) only through its `-th
power: h`m / .�`m.x//

`. Here, and below, x denotes the invariant PN-ordering
parameter given during inspiral by x � .GM˝=c3/2=3.

The main novelty introduced by Damour et al. [69] is to write the .`;m/
multipolar waveform emitted by a circular nonspinning compact binary as the
product of several factors, namely

h.�/`m D GM�

c2R
n.�/`mc`C�.�/x.`C�/=2Y`��;�m

��
2
;˚
� OS.�/eff T`meiı`m�``m: (7.41)

Here � denotes the parity of ` C m (� D �.` C m/), i.e. � D 0 for “even-parity”
(mass-generated) multipoles (` C m even), and � D 1 for “odd-parity” (current-
generated) ones (` C m odd); n.�/`m and c`C�.�/ are numerical coefficients; OS.�/eff is a
�-normalized effective source (whose definition comes from the EOB formalism);
T`m is a resummed version [51, 53] of an infinite number of “leading logarithms”
entering the tail effects [21, 23]; ı`m is a supplementary phase (which corrects the
phase effects not included in the complex tail factor T`m), and, finally, .�`m/

` denotes
the `-th power of the quantity �`m which is the new building block introduced
in [69]. Note that in previous papers [51, 53] the quantity .�`m/

` was denoted as f`m
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and we will often use this notation below. Before introducing explicitly the various
elements entering the waveform (7.41) it is convenient to decompose h`m as

h.�/`m D h.N;�/`m
Oh.�/`m; (7.42)

where h.N;�/`m is the Newtonian contribution (i.e. the product of the first five factors in
Eq. (7.41)) and

Oh.�/`m � OS.�/eff T`mei‹`m f`m (7.43)

represents a resummed version of all the PN corrections. The PN correcting factor
Oh.�/`m , as well as all its building blocks, has the structure Oh.�/`m D 1C O.x/.

The reader will find in [69] the definitions of the quantities entering the
“Newtonian” waveform h.N;�/`m , as well as the precise definition of the effective source

factor OS.�/eff , which constitutes the first factor in the PN-correcting factor Oh.�/`m. Let us

only note here that the definition of OS.�/eff makes use of EOB-defined quantities. For

instance, for even-parity waves .� D 0/ OS.0/eff is defined as the �-scaled effective

energy Eeff=�c2. [We use the “J-factorization” definition of OS.�/eff when � D 1, i.e. for
odd parity waves.]

The second building block in the factorized decomposition is the “tail factor”
T`m (introduced in [51, 53]). As mentioned above, T`m is a resummed version of
an infinite number of “leading logarithms” entering the transfer function between
the near-zone multipolar wave and the far-zone one, due to tail effects linked to its
propagation in a Schwarzschild background of mass MADM D Hreal

EOB. Its explicit
expression reads

T`m D 
 .`C 1 � 2i OOk/

 .`C 1/

e�
OOke2i OOk log.2kr0/; (7.44)

where r0 D 2GM=
p

e and OOk � GHreal
EOBm˝ and k � m˝ . Note that OOk differs from

k by a rescaling involving the real (rather than the effective) EOB Hamiltonian,
computed at this stage along the sequence of circular orbits.

The tail factor T`m is a complex number which already takes into account
some of the dephasing of the partial waves as they propagate out from the near
zone to infinity. However, as the tail factor only takes into account the leading
logarithms, one needs to correct it by a complementary dephasing term, eiı`m , linked
to subleading logarithms and other effects. This subleading phase correction can be
computed as being the phase ı`m of the complex ratio between the PN-expanded Oh.�/`m
and the above defined source and tail factors. In the comparable-mass case (� ¤ 0),
the 3PN ı22 phase correction to the leading quadrupolar wave was originally
computed in [53] (see also [51] for the � D 0 limit). Full results for the subleading
partial waves to the highest possible PN-accuracy by starting from the currently
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known 3PN-accurate �-dependent waveform [27] have been obtained in [69]. For
higher-order test-mass .� ! 0/ contributions, see [90, 91]. For extensions of the
(non spinning) factorized waveform of [69] see [125, 126, 136].

The last factor in the multiplicative decomposition of the multipolar waveform
can be computed as being the modulus f`m of the complex ratio between the PN-
expanded Oh.�/`m and the above defined source and tail factors. In the comparable mass
case (� ¤ 0), the f22 modulus correction to the leading quadrupolar wave was
computed in [53] (see also [51] for the � D 0 limit). For the subleading partial
waves, [69] explicitly computed the other f`m’s to the highest possible PN-accuracy
by starting from the currently known 3PN-accurate �-dependent waveform [27]. In
addition, as originally proposed in [53], to reach greater accuracy the f`m.xI �/’s
extracted from the 3PN-accurate � ¤ 0 results are completed by adding higher
order contributions coming from the � D 0 results [134, 135]. In the particular
f22 case discussed in [53], this amounted to adding 4PN and 5PN � D 0 terms.
This “hybridization” procedure was then systematically pursued for all the other
multipoles, using the 5.5PN accurate calculation of the multipolar decomposition of
the gravitational wave energy flux of [134, 135].

The decomposition of the total PN-correction factor Oh.�/`m into several factors is
in itself a resummation procedure which already improves the convergence of the
PN series one has to deal with: indeed, one can see that the coefficients entering
increasing powers of x in the PN expansion of the f`m’s tend to be systematically
smaller than the coefficients appearing in the usual PN expansion of Oh.�/`m. The reason
for this is essentially twofold: (a) the factorization of T`m has absorbed powers of
m� which contributed to make large coefficients in Oh.�/`m, and (b) the factorization
of either OHeff or Oj has (in the � D 0 case) removed the presence of an inverse
square-root singularity located at x D 1=3 which caused the coefficient of xn in any
PN-expanded quantity to grow as 3n as n ! 1.

To further improve the convergence of the waveform several resummations of the
factor f`m.x/ D 1Cc`m1 x Cc`m2 x2C : : : have been suggested. First, [51, 53] proposed
to further resum the f22.x/ function via a Padé (3,2) approximate, P32f f22.xI �/g, so as
to improve its behavior in the strong-field-fast-motion regime. Such a resummation
gave an excellent agreement with numerically computed waveforms, near the end
of the inspiral and during the beginning of the plunge, for different mass ratios [51,
66, 67]. As we were mentioning above, a new route for resumming f`m was explored
in [69]. It is based on replacing f`m by its `-th root, say

�`m.xI �/ D Œ f`m.xI �/	1=`: (7.45)

The basic motivation for replacing f`m by �`m is the following: the leading
“Newtonian-level” contribution to the waveform h.�/`m contains a factor !`r`harmv

�

where rharm is the harmonic radial coordinate used in the MPM formalism [22, 50].
When computing the PN expansion of this factor one has to insert the PN expansion
of the (dimensionless) harmonic radial coordinate rharm, rharm D x�1.1 C c1x C
O.x2//, as a function of the gauge-independent frequency parameter x. The PN
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re-expansion of Œrharm.x/	` then generates terms of the type x�`.1 C `c1x C : : : :/.
This is one (though not the only one) of the origins of 1PN corrections in h`m and
f`m whose coefficients grow linearly with `. The study of [69] has pointed out that
these `-growing terms are problematic for the accuracy of the PN-expansions. The
replacement of f`m by �`m is a cure for this problem.

Several studies, both in the test-mass limit, � ! 0 (see Fig. 1 in [69]) and
in the comparable-mass case (see notably Fig. 4 in [55]), have shown that the
resummed factorized (inspiral) EOB waveforms defined above provided remarkably
accurate analytical approximations to the “exact” inspiral waveforms computed
by numerical simulations. These resummed multipolar EOB waveforms are much
closer (especially during late inspiral) to the exact ones than the standard PN-
expanded waveforms given by Eq. (7.42) with a PN-correction factor of the usual
“Taylor-expanded” form

Oh.�/PN
`m D 1C c`m1 x C c`m3=2x

3=2 C c`m2 x2 C : : :

See Fig. 1 in [69].
Finally, one uses the newly resummed multipolar waveforms (7.41) to define a

resummation of the radiation reaction force F' defined as

F' D � 1

˝
F.`max/; (7.46)

where the (instantaneous, circular) GW flux F.`max/ is defined as

F.`max/ D 2

16�G

`maxX
`D2

X̀
mD1

.m˝/2jRh`mj2: (7.47)

Summarizing: Eqs. (7.41) and (7.46), (7.47) define resummed EOB versions of
the waveform h`m, and of the radiation reaction OF ' , during inspiral. A crucial
point is that these resummed expressions are parameter-free. Given some current
approximation to the conservative EOB dynamics (i.e. some expressions for the
A;D;Q potentials) they complete the EOB formalism by giving explicit predictions
for the radiation reaction (thereby completing the dynamics, see Eqs. (7.33)–(7.36)),
and for the emitted inspiral waveform.

7.5 EOB Description of the Merger of Binary Black Holes
and of the Ringdown of the Final Black Hole

Up to now we have reviewed how the EOB formalism, starting only from analytical
information obtained from PN theory, and adding extra resummation require-
ments (both for the EOB conservative potentials A, Eq. (7.29), and D, Eq. (7.30),
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and for the waveform, Eq. (7.41), and its associated radiation reaction force,
Eqs. (7.46), (7.47)) makes specific predictions, both for the motion and the radiation
of binary black holes. The analytical calculations underlying such an EOB descrip-
tion are essentially based on skeletonizing the two black holes as two, sufficiently
separated point masses, and therefore seem unable to describe the merger of the
two black holes, and the subsequent ringdown of the final, single black hole
formed during the merger. However, as early as 2000 [33], the EOB formalism
went one step further and proposed a specific strategy for describing the complete
waveform emitted during the entire coalescence process, covering inspiral, merger
and ringdown. This EOB proposal is somewhat crude. However, the predictions it
has made (years before NR simulations could accurately describe the late inspiral
and merger of binary black holes) have been broadly confirmed by subsequent NR
simulations. [See the Introduction for a list of EOB predictions.] Essentially, the
EOB proposal (which was motivated partly by the closeness between the 2PN-
accurate effective metric geff

�� [32] and the Schwarzschild metric, and by the results
of [76, 122]) consists of:

(a) defining, within EOB theory, the instant of (effective) “merger” of the two black
holes as the (dynamical) EOB time tm where the orbital frequency˝.t/ reaches
its maximum;

(b) describing (for t � tm) the inspiral-plus-plunge (or simply insplunge) waveform,
hinsplunge.t/, by using the inspiral EOB dynamics and waveform reviewed in the
previous Section; and

(c) describing (for t � tm) the merger-plus-ringdown waveform as a superposition
of several quasi-normal-mode (QNM) complex frequencies of a final Kerr black
hole (of mass Mf and spin parameter af , self-consistency estimated within the
EOB formalism), say

�
Rc2

GM

�
hringdown
`m .t/ D

X
N

CC
N e��C

N .t�tm/ ; (7.48)

with �C
N D ˛N C i!N , and where the label N refers to indices .`; `0;m; n/, with

.`;m/ being the Schwarzschild-background multipolarity of the considered
(metric) waveform h`m, with n D 0; 1; 2 : : : being the ‘overtone number’ of
the considered Kerr-background Quasi-Normal-Mode, and `0 the degree of its
associated spheroidal harmonics S`0m.a�; �/;

(d) determining the excitation coefficients CC
N of the QNM’s in Eq. (7.48) by using

a simplified representation of the transition between plunge and ring-down
obtained by smoothly matching (following [51]), on a .2p C1/-toothed “comb”
.tm � pı; : : : ; tm � ı; tm; tm C ı; : : : ; tm C pı/ centered around the merger (and
matching) time tm, the inspiral-plus-plunge waveform to the above ring-down
waveform.
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Finally, one defines a complete, quasi-analytical EOB waveform (covering the
full process from inspiral to ring-down) as:

hEOB
`m .t/ D �.tm � t/ hinsplunge

`m .t/C �.t � tm/ hringdown
`m .t/ ; (7.49)

where �.t/ denotes Heaviside’s step function. The final result is a waveform that
essentially depends only on the choice of a resummed EOB A.u/ potential, and, less
importantly, on the choice of resummation of the main waveform amplitude factor
f22 D .�22/

2.
We have emphasized here that the EOB formalism is able, in principle, starting

only from the best currently known analytical information, to predict the full
waveform emitted by coalescing binary black holes. The early comparisons between
3PN-accurate EOB predicted waveforms7 and NR-computed waveforms showed
a satisfactory agreement between the two, within the (then relatively large) NR
uncertainties [35, 123]. Moreover, as we shall discuss below, it has been recently
shown that the currently known Padé-resummed 3PN-accurate A.u/ potential is
able, as is, to describe with remarkable accuracy several aspects of the dynamics
of coalescing binary black holes, [71, 110].

On the other hand, when NR started delivering high-accuracy waveforms, it
became clear that the 3PN-level analytical knowledge incorporated in EOB theory
was not accurate enough for providing waveforms agreeing with NR ones within
the high-accuracy needed for detection, and data analysis of upcoming GW signals.
[See, e.g., the discussion in Sect. II of [125].] At that point, one made use of
the natural flexibility of the EOB formalism. Indeed, as already emphasized in
early EOB work [42, 64], we know from the analytical point of view that there
are (yet uncalculated) further terms in the u-expansions of the EOB potentials
A.u/;D.u/; : : : (and in the x-expansion of the waveform), so that these terms can
be introduced either as “free parameter(s) in constructing a bank of templates, and
[one should] wait until” GW observations determine their value(s) [42], or as “fitting
parameters and adjusted so as to reproduce other information one has about the
exact results” (to quote [64]). For instance, modulo logarithmic corrections that will
be further discussed below, the Taylor expansion in powers of u of the main EOB
potential A.u/ reads

ATaylor.uI �/ D 1 � 2u C Qa3.�/u3 C Qa4.�/u4 C Qa5.�/u5 C Qa6.�/u6 C : : :

where the 2PN and 3PN coefficients Qa3.�/ D 2� and Qa4.�/ D a4� have been
known since 2001, but where the 4PN, 5PN,: : : coefficients, Qa5.�/; Qa6.�/; : : : were
not known at the time (see below for the recent determination of Qa5.�/). A first
attempt was made in [64] to use numerical data (on circular orbits of corotating
black holes) to fit for the value of a (single, effective) 4PN parameter of the simple

7The new, resummed EOB waveform discussed above was not available at the time, so that these
comparisons employed the coarser “Newtonian-level” EOB waveform h.N;�/22 .x/.
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form Qa5.�/ D a5� entering a Padé-resummed 4PN-level A potential, i.e.

A14.uI a5; �/ D P14


A3PN.u/C �a5u

5
�
: (7.50)

This strategy was pursued in [36, 53] and many subsequent works. It was pointed
out in [55] that the introduction of a further 5PN coefficient Qa6.�/ D a6�, entering
a Padé-resummed 5PN-level A potential, i.e.

A15.uI a5; a6; �/ D P15


A3PN.u/C �a5u

5 C �a6u
6
�
; (7.51)

helped in having a closer agreement with accurate NR waveforms.
In addition, [51, 53] introduced another type of flexibility parameters of the EOB

formalism: the non quasi-circular (NQC) parameters accounting for uncalculated
modifications of the quasi-circular inspiral waveform presented above, linked to
deviations from an adiabatic quasi-circular motion. These NQC parameters are of
various types, and subsequent works [12, 37, 55, 66, 67, 125] have explored several
ways of introducing them. They enter the EOB waveform in two separate ways.
First, through an explicit, additional complex factor multiplying h`m, e.g.

f NQC
`m D .1C a`m1 n1 C a`m2 n2/ expŒi.a`m3 n3 C a`m4 n4/	

where the ni’s are dynamical functions that vanish in the quasi-circular limit (with
n1; n2 being time-even, and n3; n4 time-odd). For instance, one usually takes n1 D
.pr�

=r˝/2. Second, through the (discrete) choice of the argument used during the
plunge to replace the variable x of the quasi-circular inspiral argument: e.g. either
x˝ � .GM˝/2=3, or (following [49]) x' � v2' D .r!˝/2 where v' � ˝ r! , and
r! � rŒ .r; p'/	1=3 is a modified EOB radius, with  being defined as

 .r; p'/ D 2

r2

�
dA.r/

dr

��1
2
41C 2�

0
@
vuutA.r/

 
1C p2'

r2

!
� 1

1
A
3
5 : (7.52)

For a given value of the symmetric mass ratio, and given values of the A-flexibility
parameters Qa5.�/; Qa6.�/ one can determine the values of the NQC parameters a`mi ’s
from accurate NR simulations of binary black hole coalescence (with mass ratio �)
by imposing, say, that the complex EOB waveform hEOB

`m .tEOBI Qa5; Qa6I a`mi / osculates
the corresponding NR one hNR

`m .t
NR/ at their respective instants of “merger”, where

tEOB
merger � tEOB

m was defined above (maximum of ˝EOB.t/), while tNR
merger is defined

as the (retarded) NR time where the modulus jhNR
22 .t/j of the quadrupolar waveform

reaches its maximum. The order of osculation that one requires between hEOB
`m .t/

and hNR
`m .t/ (or, separately, between their moduli and their phases or frequencies)

depends on the number of NQC parameters a`mi . For instance, a`m1 and a`m2 affect
only the modulus of hEOB

`m and allow one to match both jhEOB
`m j and its first time

derivative, at merger, to their NR counterparts, while a`m3 ; a
`m
4 affect only the phase
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of the EOB waveform, and allow one to match the GW frequency !EOB
`m .t/ and

its first time derivative, at merger, to their NR counterparts. The above EOB/NR
matching scheme has been developed and declined in various versions in [10, 12, 37,
55, 66, 67, 73, 125]. One has also extracted the needed matching data from accurate
NR simulations, and provided explicit, analytical �-dependent fitting formulas for
them [55, 73, 125].

Having so “calibrated” the values of the NQC parameters by extracting non-
perturbative information from a sample of NR simulations, one can then, for any
choice of the A-flexibility parameters, compute a full EOB waveform (from early
inspiral to late ringdown). The comparison of the latter EOB waveform to the results
of NR simulations is discussed in the next Section.

7.6 EOB vs NR

There have been several different types of comparison between EOB and NR. For
instance, the early work [35] pioneered the comparison between a purely analytical
EOB waveform (uncalibrated to any NR information) and a NR waveform, while
the early work [52] compared the predictions for the final spin of a coalescing
black hole binary made by EOB, completed by the knowledge of the energy
and angular momentum lost during ringdown by an extreme mass ratio binary
(computed by the test-mass NR code of [65]), to comparable-mass NR simulations
[93]. Since then, many other EOB/NR comparisons have been performed, both in
the comparable-mass case [36, 37, 53, 55, 66, 67, 123], and in the small-mass-ratio
case [12, 51, 141, 142]. Note in this respect that the numerical simulations of the GW
emission by extreme mass-ratio binaries have provided (and still provide) a very
useful “laboratory” for learning about the motion and radiation of binary systems,
and their description within the EOB formalism.

Here we shall discuss only two recent examples of EOB/NR comparisons, which
illustrate different facets of this comparison.

7.6.1 EOB[NR] Waveforms vs NR Ones

We explained above how one could complete the EOB formalism by calibrating
some of the natural EOB flexibility parameters against NR data. First, for any given
mass ratio � and any given values of the A-flexibility parameters Qa5.�/; Qa6.�/, one
can use NR data to uniquely determine the NQC flexibility parameters ai’s. In other
words, we have (for a given �)

ai D aiŒNR dataI a5; a6	 ;
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where we defined a5 and a6 so that Qa5.�/ D a5�; Qa6.�/ D a6�. [We allow for some
residual �-dependence in a5 and a6.] Inserting these values in the (analytical) EOB
waveform then defines an NR-completed EOB waveform which still depends on the
two unknown flexibility parameters a5 and a6.

In [55] the .a5; a6/-dependent predictions made by such a NR-completed EOB
formalism were compared to the high-accuracy waveform from an equal-mass
binary black hole (� D 1=4) computed by the Caltech-Cornell-CITA group [131],
(and then made available on the web). It was found that there is a strong degeneracy
between a5 and a6 in the sense that there is an excellent EOB-NR agreement for an
extended region in the .a5; a6/-plane. More precisely, the phase difference between
the EOB (metric) waveform and the Caltech-Cornell-CITA one, considered between
GW frequencies M!L D 0:047 and M!R D 0:31 (i.e., the last 16 GW cycles before
merger), stays smaller than 0.02 radians within a long and thin banana-like region
in the .a5; a6/-plane. This “good region” approximately extends between the points
.a5; a6/ D .0;�20/ and .a5; a6/ D .�36;C520/. As an example (which actually
lies on the boundary of the “good region”), we shall consider here (following [56])
the specific values a5 D 0; a6 D �20 (to which correspond, when � D 1=4,
a1 D �0:036347; a2 D 1:2468). [Damour and Nagar [55] did not make use of the
NQC phase flexibility; i.e. it took a3 D a4 D 0. In addition, it introduced a (real)
modulus NQC factor f NQC

`m only for the dominant quadrupolar wave ` D 2 D m.] We
henceforth use M as time unit. This result relies on the proper comparison between
NR and EOB time series, which is a delicate subject. In fact, to compare the NR
and EOB phase time-series �NR

22 .tNR/ and �EOB
22 .tEOB/ one needs to shift, by additive

constants, both one of the time variables, and one of the phases. In other words, we
need to determine  and ˛ such that the “shifted” EOB quantities

t0EOB D tEOB C  ; �
0EOB
22 D �EOB

22 C ˛ (7.53)

“best fit” the NR ones. One convenient way to do so is first to “pinch” (i.e. constrain
to vanish) the EOB/NR phase difference at two different instants (corresponding to
two different frequencies !1 and !2). Having so related the EOB time and phase
variables to the NR ones we can straightforwardly compare the EOB time series to
its NR correspondant. In particular, we can compute the (shifted) EOB–NR phase
difference

�!1;!2�EOBNR
22 .tNR/ � �

0EOB
22 .t0EOB/� �NR

22 .t
NR/: (7.54)

Figure 7.2 compares8 (the real part of) the analytical EOB metric quadrupolar
waveform �EOB

22 =� to the corresponding (Caltech-Cornell-CITA) NR metric wave-
form �NR

22 =�. [Here, �22 denotes the Zerilli-normalized asymptotic quadrupolar
waveform, i.e.�22 � ORh22=

p
24with OR D Rc2=GM.] This NR metric waveform has

been obtained by a double time-integration (following the procedure of [66]) from

8The two “pinching” frequencies used for this comparison are M!1 D 0:047 and M!2 D 0:31.
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Fig. 7.2 This figure illustrates the comparison (made in [55, 56]) between the (NR-completed)
EOB waveform (Zerilli-normalized quadrupolar (` D m D 2) metric waveform (7.49) with
parameter-free radiation reaction (7.46) and with a5 D 0, a6 D �20) and one of the most accurate
numerical relativity waveform (equal-mass case) nowadays available [131]. The phase difference
between the two is�� � ˙0:01 radians during the entire inspiral and plunge, which is at the level
of the numerical error

the original, publicly available, curvature waveform  224 [131]. Such a curvature
waveform has been extrapolated both in resolution and in extraction radius. The
agreement between the analytical prediction and the NR result is striking, even
around the merger. See Fig. 7.3 which closes up on the merger. The vertical line
indicates the location of the EOB-merger time, i.e., the location of the maximum of
the orbital frequency.

The phasing agreement between the waveforms is excellent over the full time
span of the simulation (which covers 32 cycles of inspiral and about 6 cycles of
ringdown), while the modulus agreement is excellent over the full span, apart from
two cycles after merger where one can notice a difference. More precisely, the phase
difference, �� D �EOB

metric � �NR
metric, remains remarkably small (� ˙0:02 radians)

during the entire inspiral and plunge (!2 D 0:31 being quite near the merger). By
comparison, the root-sum of the various numerical errors on the phase (numerical
truncation, outer boundary, extrapolation to infinity) is about 0:023 radians during
the inspiral [131]. At the merger, and during the ringdown, �� takes somewhat
larger values (� ˙0:1 radians), but it oscillates around zero, so that, on average,
it stays very well in phase with the NR waveform whose error rises to ˙0:05
radians during ringdown. In addition, [55] compared the EOB waveform to accurate
numerical relativity data (obtained by the Jena group [66]) on the coalescence of
unequal mass-ratio black-hole binaries. Again, the agreement was good, and within
the numerical error bars.

This type of high-accuracy comparison between NR waveforms and EOB[NR]
ones (where EOB[NR] denotes a EOB formalism which has been completed by
fitting some EOB-flexibility parameters to NR data) has been pursued and extended
in [125]. The latter reference used the “improved” EOB formalism of [55] with some
variations (e.g. a third modulus NQC coefficient ai, two phase NQC coefficients, the
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Fig. 7.3 Close up around merger of the waveforms of Fig. 7.2. Note the excellent agreement
between both modulus and phasing also during the ringdown phase

argument x˝ in .�Taylor
`m .x//`, eight QNM modes) and calibrated it to NR simulations

of mass ratios q D m2=m1 D 1; 2; 3; 4 and 6. They considered not only the
leading .`;m/ D .2; 2/ GW mode, but the subleading ones .2; 1/; .3; 3/; .4; 4/ and
.5; 5/. They found that, for this large range of mass ratios, EOB[NR] (with suitably
fitted, �-dependent values of a5 and a6) was able to describe the NR waveforms
essentially within the NR errors. See also the recent [73] which incorporated several
analytical advances in the two-body problem. This confirms the usefulness of the
EOB formalism in helping the detection and analysis of upcoming GW signals.

Here, having in view GW observations from ground-based interferometric
detectors we focussed on comparable-mass systems. The EOB formalism has also
been compared to NR results in the extreme mass-ratio limit � � 1. In particular,
[12] found an excellent agreement between the analytical and numerical results.

7.6.2 EOB[3PN] Dynamics vs NR One

Let us also mention other types of EOB/NR comparisons. Several examples of
EOB/NR comparisons have been performed directly at the level of the dynamics
of a binary black hole, rather than at the level of the waveform. Moreover, contrary
to the waveform comparisons of the previous subsection which involved an NR-
completed EOB formalism (“EOB[NR]”), several of the dynamical comparisons
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we are going to discuss involve the purely analytical 3PN-accurate EOB formalism
(“EOB[3PN]”), without any NR-based improvement.

First, Le Tiec et al. [110] have extracted from accurate NR simulations of slightly
eccentric binary black-hole systems (for several mass ratios q D m1=m2 between
1=8 and 1) the function relating the periastron-advance parameter

K D 1C �˚

2�
;

(where �˚ is the periastron advance per radial period) to the dimensionless
averaged angular frequency M˝' (with M D m1 C m2 as above). Then they
compared the NR-estimate of the mass-ratio dependent functional relation

K D K.M˝' I �/ ;

where � D q=.1Cq/2, to the predictions of various analytic approximation schemes:
PN theory, EOB theory and two different ways of using GSF theory. Let us only
mention here that the prediction from the purely analytical EOB[3PN] formalism for
K.M˝' I �/ [43] agreed remarkably well (essentially within numerical errors) with
its NR estimate for all mass ratios, while, by contrast, the PN-expanded prediction
for K.M˝' I �/ [60] showed a much poorer agreement, especially as q moved away
from 1.

Second, Damour et al. [71] have extracted from accurate NR simulations of
black-hole binaries (with mass ratios q D m2=m1 D 1; 2 and 3) the gauge-invariant
relation between the (reduced) binding energy E D .E tot � M/=� and the (reduced)
angular momentum j D J=.G�M/ of the system. Then they compared the NR-
estimate of the mass-ratio dependent functional relation

E D E. jI �/

to the predictions of various analytic approximation schemes: PN theory and various
versions of EOB theory (some of these versions were NR-completed). Let us
only mention here that the prediction from the purely analytical, 3PN-accurate
EOB[3PN] for E. jI �/ agreed remarkably well with its NR estimate (for all mass
ratios) essentially down to the merger. This is illustrated in Fig. 7.4 for the q D 1

case. By contrast, the 3PN expansion in (powers of 1=c2) of the function E. jI �/
showed a much poorer agreement (for all mass ratios).

Recently, several other works have (successfully) compared EOB dynamical
predictions to NR results. Damour et al. [74] compared the EOB[NR] predictions for
the dynamical state of a non-spinning, coalescing BBH at merger to NR results and
found agreement at the per mil level. Hinderer et al. [97] compared the predictions
of an analytical (3.5PN-accurate) spinning EOB model to NR simulations and found
a very good agreement.
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Fig. 7.4 Comparison (made in [71]) between various analytical estimates of the energy-angular
momentum functional relation and its numerical-relativity estimate (equal-mass case). The stan-
dard “Taylor-expanded” 3PN E. j/ curve shows the largest deviation from NR results, especially
at low j’s, while the two (adiabatic and nonadiabatic) 3PN-accurate, non-NR-calibrated EOB E. j/
curves agree remarkably well with the NR one

7.7 Other Developments

7.7.1 EOB With Spinning Bodies

We do not wish to enter into a detailed discussion of the extension of the EOB
formalism to binary systems made of spinning bodies. Let us only mention that
the spin-extension of the EOB formalism was initiated in [42], that the first EOB-
based analytical calculation of a complete waveform from a spinning binary was
performed in [34], and that the first attempt at calibrating a spinning EOB model
to accurate NR simulations of spinning (non precessing) black-hole binaries was
presented in [124]. In addition, several formal aspects related to the inclusion of
spins in the EOB formalism have been discussed in [7–9, 68, 116] (see references
within these papers for PN works dealing with spin effects) and a generalization
of the factorized multipolar waveform of [69] to spinning, non-precessing binaries
has been constructed in [126, 136]. Comparisons between spinning-EOB models
and NR simulations have been obtained in [124, 128, 132] and in the spinning,
precessing case, in [127, 133].
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Recently, a new, promising, route to deal with spin effects in the EOB formalism
was proposed [54]. This model is based on the introduction and systematic use of the
gauge-invariant concept of centrifugal radius that comes from a new understanding
of the Hamiltonian of a point-particle on a Kerr background.

7.7.2 EOB With Tidally Deformed Bodies

Ë In binary systems comprising neutron stars, rather than black holes, the tidal
deformation of the neutron star(s) will significantly modify the phasing of the
emitted gravitational waveform during the late inspiral, thereby offering the pos-
sibility to measure the tidal polarizability of neutron stars [72, 80, 84, 96]. As
GW’s from binary neutron stars are expected sources for upcoming ground-based
GW detectors, it is important to extend the EOB formalism by including tidal
effects. This extension has been defined in [19, 70]. The comparison between this
tidal-extended EOB and state-of-the-art NR simulations of neutron-star binaries
has been discussed in [3, 4, 13, 98]. It appears from these comparisons that the
tidal-extended EOB formalism is able to describe the motion and radiation of
neutron-star binaries within NR errors. More accurate simulations will be needed
to ascertain whether one needs to calibrate some higher-order flexibility parameters
of the tidal-EOB formalism, or whether the currently known analytic accuracy is
sufficient [13, 14, 129].

7.7.3 EOB And GSF

We mentioned in the Introduction that GSF theory has recently opened a new source
of information on the general relativistic two-body problem. Let us briefly mention
here that there has been a quite useful transfer of information from GSF theory
to EOB theory. The program of using GSF-theory to improve EOB-theory was
first highlighted in [43]. That work pointed to several concrete gauge-invariant
calculations (within GSF theory) that would provide accurate information about
the O.�/ contributions to several EOB potentials. More precisely, let us define the
functions a.u/ and Nd.u/ as the �-linear contributions to the EOB potentials A.uI �/
and D.uI �/ � D�1.uI �/:

A.uI �/ D 1� 2u C � a.u/C O.�2/ ;

D.uI �/ D .AB/�1 D 1C � Nd.u/C O.�2/ :

Damour [43] has shown that a computation of the GSF-induced correction to the
periastron advance of slightly eccentric orbits would allow one to compute the
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following combination of EOB functions

N�.u/ D a.u/C u a0.u/C 1

2
u.1 � 2u/ a00.u/C .1 � 6u/ Nd.u/ :

The GSF-calculation of the EOB function N�.u/ was then performed in [6] (in the
range 0 � u � 1

6
).

Later, a series of works by Le Tiec and collaborators [11, 111, 112] have (through
an indirect route) shown how GSF calculations could be used to compute the EOB
�-linear a.u/ function separately from the Nd.u/ one. Barausse [11] then gave a fitting
formula for a.u/ over the interval 0 � u � 1

5
as well as accurate estimates of the

coefficients of the Taylor expansion of a.u/ around u D 0 (corresponding to the
knowledge of the PN expansion of a.u/ to a very high PN order). More recently,
Ackay et al. [1] succeeded in accurately computing (through GSF theory) the EOB
a.u/ function over the larger interval 0 � u � 1

3
. It was (surprisingly) found that

a.u/ diverges like a.u/ � 0:25.1 � 3u/�1=2 at the light-ring limit u ! �
1
3

	�
.

The meaning for EOB theory of this singular behavior of a.u/ at the light-ring is
discussed in detail in [1].

Let us finally mention that [18] has recently showed how to combine analytical
GSF theory with the partial 4PN-level results of [103] so as to obtain the complete
analytical expression of the 4PN-level contribution to the A potential. Specifically,
[18] found that the coefficient Qa5.�I ln a/ of u5 in the PN expansion, of A.uI �/,

ATaylor.uI �/ D 1 � 2u C Qa3.�/u3 C Qa4.�/u4 C Qa5.�I ln u/u5 C Qa6.�I ln u/u6 C : : :

was equal to

Qa5.�I ln u/ D .a5 C 64

5
ln u/� C a0

5�
2 ;

with

a5 D �4237
60

C 2275

512
�2 C 256

5
ln 2C 128

5
� ;

a0
5 D �221

6
C 41

32
�2 :

Note that Qa5.�/ is no more than quadratic in �, i.e. without contributions of degree
�3 and �4. [Contributions of degree �3 and �4 would a priori be expected in a 4PN
level quantity; see, e.g., e4PN.�I ln x/ below.] We recall that similar cancellations of
higher �n terms were found at lower PN orders in the EOB A.uI �/ function. Namely,
they were found to contain only terms linear in �, while Qa3.�/ could a priori have
been quadratic in �, and Qa4.�/ could a priori have been cubic in �. The fact that
similar remarkable cancellations still hold, at the 4PN level, is a clear indication
that the EOB packaging of information of the dynamics in the A.uI �/ potential is
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quite compact. By contrast, the PN expansions of other dynamical functions do not
exhibit such cancellations. For instance, the coefficients entering the PN expansion
of the (gauge-invariant) function E.xI �/ relating the total energy to the frequency
parameter x � .M˝'/

2=3, namely

E.xI �/ D �1
2
�c2x.1C e1PN.�/x C e2PN.�/x

2 C e3PN.�/x
3

Ce4PN.�I ln x/x4 C O.x5 ln x//;

contain all the a priori possible powers of �. In particular, at the 4PN level
e4PN.�I ln x/ is a polynomial of fourth degree in �.

7.7.4 Scattering Angle in EOB And NR

Recently, [75] explored the performance of the EOB model in a rather different
physical scenario, by comparing EOB and NR predictions of the scattering angle �
in hyperbolic-like, close binary-black-hole encounters, as a function of the impact
parameter. The left panel of Fig. 7.5 shows the coordinate trajectories of the two
BHs in hyperbolic-like encounters for four selected values of the impact parameter
bNR. The right panel of the same figures compares the NR scattering angle with
various EOB and PN predictions. The conclusion of this study was that NR data
and the state-of-the-art EOB model agree with their respective error bars. On the
contrary, PN-based predictions are very inaccurate.

Let us briefly summarize the key elements behind the computation showed in
Fig. 7.5. From the analytical relativity (AR) point of view, the scattering angle
depends on the full equations of motion, including both conservative (Hamiltonian

Fig. 7.5 Left panel: coordinate trajectories of the two BHs for four selected values of the impact
parameter. Right panel: comparing the NR scattering angle with various EOB and PN predictions
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H) and radiation-reaction (Frad reac) effects. The current AR knowledge of Frad reac

along general (non-quasi-circular) motions [17] is less complete than that of
H and cannot be used for accurate NR/AR comparisons. However, it has been
recently pointed out [17] that, when neglecting terms quadratic in Frad reac (i.e.,
of order .v=c/10, where v is the velocity), the scattering angle � can be analytically
computed solely from the knowledge of the Hamiltonian H. More precisely, the AR
approximation �AR is given by the value it would have in a conservative-dynamics
scattering of a binary system whose energy and angular momentum are the average
values between the incoming and outgoing states:

�AR D �.conservative/. NE; NJ/; (7.55)

where NE � .Ein C Eout/ =2 and NJ � .Jin C Jout/ =2. Notably, [75] used NR measures
of the radiative losses �ENR D ENR

in � ENR
out , �JNR D JNR

in � JNR
out , so to have NE D

ENR
in ��ENR=2 and NJ D JNR

in ��JNR=2. The use of such NR information allows to
overcome the current limitation of the analytical radiation reaction for generic orbits
and gain direct access to the conservative part of the dynamics. Overall, [75] study
opens a new avenue for extracting from NR simulations nonperturbative information
to complete the EOB formalism. In particular NR scattering experiments for small
impact parameters allow one to probe the height and shape of the EOB effective
energy potential very close to its peak, i.e., for BH separations of the order of 3M.

7.8 Conclusions

Though the present work did not attempt to expound the many different approaches
to the general relativistic two-body problem but focussed only on a few approaches,
we hope to have made it clear that there is a complementarity between the various
current ways of tackling this problem: post-Newtonian,9 effective one body, gravita-
tional self-force, and numerical relativity simulations. Among these approaches, the
effective one body formalism plays a special role in that it allows one to combine,
in a synergetic manner, information coming from the other approaches. As we
are approaching the 100th anniversary of the discovery of General Relativity, it is
striking to see how this theory has not only passed with flying colors many stringent
tests, but has established itself as an essential tool for describing many aspects of the
Universe from, say, the Big Bang to an accurate description of planets and satellites.
Though the two-body (and, more generally, the N-body) problem is one of the oldest
problems in general relativity, it is more lively than ever.

9Including the effective-field-theory reformulation of the computation of the PN-expanded Fokker-
action [47, 89].
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